English  |  正體中文  |  简体中文  |  Items with full text/Total items : 87214/116105 (75%)
Visitors : 23266029      Online Users : 213
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/74458
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/74458


    Title: A rule-based classification algorithm: A rough set approach
    Authors: Liao, C.-C.;Hsu, K.-W.
    廖家奇;徐國偉
    Contributors: 資科系
    Keywords: Attribute-value pairs;Classification algorithm;Classification performance;Decision rules;Indiscernibility;Interpretability;Matrix methods;Nominal datum;Rough set;Rule generation method;Rule induction;Rule-based classification;separate-and-conquer;Understandability;Algorithms;Artificial intelligence;Classification (of information);Learning systems;Rough set theory;Separation;Data mining
    Date: 2012
    Issue Date: 2015-04-10 15:35:10 (UTC+8)
    Abstract: In this paper, we propose a rule-based classification algorithm named ROUSER (ROUgh SEt Rule). Researchers have proposed various classification algorithms and practitioners have applied them to various application domains, while most of the classification algorithms are designed with a focus on classification performance rather than interpretability or understandability of the models built using the algorithms. ROUSER is specifically designed to extract human understandable decision rules from nominal data. What distinguishes ROUSER from most, if not all, other rule-based classification algorithms is that it utilizes a rough set approach to decide an attribute-value pair for the antecedents of a rule. Moreover, the rule generation method of ROUSER is based on the separate-and-conquer strategy, and hence it is more efficient than the indiscernibility matrix method that is widely adopted in the classification algorithms based on the rough set theory. On about half of the data sets considered in experiments, ROUSER can achieve better classification performance than do classification algorithms that are able to generate decision rules or trees. © 2012 IEEE.
    Relation: Proceeding - 2012 IEEE International Conference on Computational Intelligence and Cybernetics, CyberneticsCom 2012,1-5
    10.1109/CyberneticsCom.2012.6381605
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1109/CyberneticsCom.2012.6381605
    DOI: 10.1109/CyberneticsCom.2012.6381605
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML653View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback