政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/74493
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 20 |  全文笔数/总笔数 : 90058/119991 (75%)
造访人次 : 24046986      在线人数 : 1505
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/74493


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/74493


    题名: On continuous top-k similarity joins
    作者: Li, D.J.;Wang, E.T.;Tsai, Y.-C.;Chen, Arbee L. P.
    陳良弼
    贡献者: 資科系
    关键词: Continuous data;Continuous queries;Data integration;Data sets;Data stream;Duplicate detection;Dynamic environments;Fundamental operations;Processing time;Similarity functions;Similarity join;Sliding Window;Static environment;Top-k query;Algorithms;Data communication systems;Data structures;Experiments;Pattern recognition;Data processing
    日期: 2012
    上传时间: 2015-04-10 17:26:26 (UTC+8)
    摘要: Given a similarity function and a threshold σ within a range of [0, 1], a similarity join query between two sets of records returns pairs of records from the two sets, which have similarity values exceeding or equaling σ. Similarity joins have received much research attention since it is a fundamental operation used in a wide range of applications such as duplicate detection, data integration, and pattern recognition. Recently, a variant of similarity joins is proposed to avoid the need to set the threshold σ, i.e. top-k similarity joins. Since data in many applications are generated as a form of continuous data streams, in this paper, we make the first attempt to solve the problem of top-k similarity joins considering a dynamic environment involving a data stream, named continuous top-k similarity joins. Given a set of records as the query, we continuously output the top-k pairs of records, ranked by their similarity values, for the query and the most recent data, i.e. the data contained in the sliding window of a monitored data stream. Two algorithms are proposed to solve this problem. The first one extends an existing approach for static datasets to find the top-k pairs regarding the query and the newly arrived data and then keep the obtained pairs in a candidate result set. As a result, the top-k pairs can be found from the candidate result set. In the other algorithm, the records in the query are preprocessed to be indexed using a novel data structure. By this structure, the data in the monitored stream can be compared with all records in the query at one time, substantially reducing the processing time of finding the top-k results. A series of experiments are performed to evaluate the two proposed algorithms and the experiment results demonstrate that the algorithm with preprocessing outperforms the other algorithm extended from an existing approach for a static environment.
    關聯: DATA 2012 - Proceedings of the International Conference on Data Technologies and Applications
    数据类型: conference
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML724检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈