English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93932/124380 (76%)
Visitors : 28984875      Online Users : 480
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 會議論文 >  Item 140.119/75025
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/75025

    Title: Change periods detection for multivariate time series with fuzzy methods
    Authors: Li, W.;Hu, R.;Wu, Berlin
    Contributors: 應數系
    Keywords: Change periods;Change-points;Cluster centers;Empirical studies;Fuzzy entropy;Fuzzy methods;Fuzzy statistic;Fuzzy time series;Germany;Integrated identification;Macroeconomic indicators;Multivariate time series;Performance indices;Structure change;Testing method;Artificial intelligence;Computer software;Membership functions;Time series;Time series analysis
    Date: 2009-12
    Issue Date: 2015-05-07 15:28:43 (UTC+8)
    Abstract: Researchers have proposed a lot of detecting and testing methods about change points. While in the real case, it shows that the structure change of a time series was changed gradually, that is the change points has illustrated senses of fuzziness. This concept is important in fitting different models to different regimes of the data regarding economic interpretation of the data during that regime. In this paper we present an integrated identification procedure for change periods detection. The membership function of each system, which include multivariate time series data, corresponding to the cluster centers as performance index grouping is calculated. A fuzzy time series C* t is defined on averages of cumulative fuzzy entropies of the three time series. Finally, an empirical study about change periods identification for Germany, France and Greece major macroeconomic indicators are demonstrated. ©2009 IEEE.
    Relation: Proceedings - 2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009,-5363912
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1109/CISE.2009.5363912
    DOI: 10.1109/CISE.2009.5363912
    Appears in Collections:[應用數學系] 會議論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback