English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 112721/143689 (78%)
Visitors : 49520977      Online Users : 863
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75057
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/75057


    Title: An Incremental Learning Approach to Motion Planning with Roadmap Management
    Authors: Li, Tsai-yen;SHIE, YANG-CHUAN
    李蔡彥
    Contributors: 資科系
    Keywords: incremental learning;motion planning;probabilistic roadmap management;reconfigurable random forest;planning for dynamic environments
    Date: 2007
    Issue Date: 2015-05-08 16:07:38 (UTC+8)
    Abstract: Traditional approaches to the motion-planning problem can be classified into solutions for single-query and multiple-query problems with the tradeoffs on run-time computation cost and adaptability to environment changes. In this paper, we propose a novel approach to the problem that can learn incrementally on every planning query and effectively manage the learned road-map as the process goes on. This planner is based on previous work on probabilistic roadmaps and uses a data structure called Reconfigurable Random Forest (RRF), which extends the Rapidly-exploring Random Tree (RRT) structure proposed in the literature. The planner can account for environmental changes while keeping the size of the roadmap small. The planner removes invalid nodes in the roadmap as the obstacle configurations change. It also uses a tree-pruning algorithm to trim RRF into a more concise representation. Our experiments show that the resulting roadmap has good coverage of freespace as the original one. We have also successful incorporated the planner into the application of intelligent navigation control.
    Relation: JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 525-538
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1109/ROBOT.2002.1014238
    DOI: 10.1109/ROBOT.2002.1014238
    Appears in Collections:[資訊科學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    200703_11.pdf1352KbAdobe PDF2772View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback