政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75072
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92416/122720 (75%)
Visitors : 26254524      Online Users : 124
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/75072


    Title: Pricing call warrants with artificial neural networks: the case of the Taiwan derivative market
    Authors: Chen, Shu-heng;Lee, Wo-Chiang
    陳樹衡
    Contributors: 經濟系
    Date: 1999
    Issue Date: 2015-05-11 14:03:12 (UTC+8)
    Abstract: In this paper, artificial neural nets are applied to pricing the call warrants in the Taiwan stock market. Warrants were initialized in Taiwan in 1997 and hence a still very new product. It, therefore, may provide us a chance to test whether artificial neural nets, as a data-driven tool, can be more effective than the model-driven tools in dealing with this emerging derivative market. The data employed in this paper are the two earliest listed stock call warrants, namely, Yageo's and Pacific Electric Wire and Cable's warrants, ranging from September 4, 1997 to September 2, 1998. 24 neural nets, covering different inputs, numbers of hidden nodes and transfer functions, were attempted. Each neural net was trained for 20 independent runs. Based on the average of the in-sample performance, the best neural net was selected to compete with the Black-Scholes model and binomial model in the post-sample data. The post-sample performance of each model was evaluated by statistics. We found that the neural net model outperformed both the Black-Scholes model and the binomial model in almost all criteria
    Relation: International Symposium on Neural Networks - ISNN , vol. 6, pp. 3877-3882 vol.6
    Data Type: conference
    DOI link: http://dx.doi.org/10.1109/IJCNN.1999.830774
    DOI: 10.1109/IJCNN.1999.830774
    Appears in Collections:[Department of Economics] Proceedings

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML639View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback