政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75072
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 92604/122928 (75%)
造訪人次 : 26902309      線上人數 : 551
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/75072


    題名: Pricing call warrants with artificial neural networks: the case of the Taiwan derivative market
    作者: Chen, Shu-heng;Lee, Wo-Chiang
    陳樹衡
    貢獻者: 經濟系
    日期: 1999
    上傳時間: 2015-05-11 14:03:12 (UTC+8)
    摘要: In this paper, artificial neural nets are applied to pricing the call warrants in the Taiwan stock market. Warrants were initialized in Taiwan in 1997 and hence a still very new product. It, therefore, may provide us a chance to test whether artificial neural nets, as a data-driven tool, can be more effective than the model-driven tools in dealing with this emerging derivative market. The data employed in this paper are the two earliest listed stock call warrants, namely, Yageo's and Pacific Electric Wire and Cable's warrants, ranging from September 4, 1997 to September 2, 1998. 24 neural nets, covering different inputs, numbers of hidden nodes and transfer functions, were attempted. Each neural net was trained for 20 independent runs. Based on the average of the in-sample performance, the best neural net was selected to compete with the Black-Scholes model and binomial model in the post-sample data. The post-sample performance of each model was evaluated by statistics. We found that the neural net model outperformed both the Black-Scholes model and the binomial model in almost all criteria
    關聯: International Symposium on Neural Networks - ISNN , vol. 6, pp. 3877-3882 vol.6
    資料類型: conference
    DOI 連結: http://dx.doi.org/10.1109/IJCNN.1999.830774
    DOI: 10.1109/IJCNN.1999.830774
    顯示於類別:[經濟學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML645檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋