政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75088
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 88295/117812 (75%)
造访人次 : 23397420      在线人数 : 131
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75088


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/75088


    题名: Coreference resolution of medical concepts in discharge summaries by exploiting contextual information
    作者: Lai, Po-Ting
    賴柏廷
    Chen, C.-Y.
    Dai, H.-J.
    贡献者: 資科系
    关键词: accuracy;article;hospital discharge;hospital patient;information dissemination;medical information;model;natural language processing;patient discharge summary;artificial intelligence;automated pattern recognition;computer simulation;data mining;electronic medical record;evaluation;hospital discharge;human;methodology;multicenter study;natural language processing;semantics;United States;Artificial Intelligence;Computer Simulation;Data Mining;Electronic Health Records;Humans;Natural Language Processing;Patient Discharge;Pattern Recognition, Automated;Semantics;United States
    日期: 2012-09
    上传时间: 2015-05-12 16:05:59 (UTC+8)
    摘要: Objective: Patient discharge summaries provide detailed medical information about hospitalized patients and are a rich resource of data for clinical record text mining. The textual expressions of this information are highly variable. In order to acquire a precise understanding of the patient, it is important to uncover the relationship between all instances in the text. In natural language processing (NLP), this task falls under the category of coreference resolution. Design: A key contribution of this paper is the application of contextual-dependent rules that describe relationships between coreference pairs. To resolve phrases that refer to the same entity, the authors use these rules in three representative NLP systems: one rule-based, another based on the maximum entropy model, and the last a system built on the Markov logic network (MLN) model. Results: The experimental results show that the proposed MLN-based system outperforms the baseline system (exact match) by average F-scores of 4.3% and 5.7% on the Beth and Partners datasets, respectively. Finally, the three systems were integrated into an ensemble system, further improving performance to 87.21%, which is 4.5% more than the official i2b2 Track 1C average (82.7%). Conclusion: In this paper, the main challenges in the resolution of coreference relations in patient discharge summaries are described. Several rules are proposed to exploit contextual information, and three approaches presented. While single systems provided promising results, an ensemble approach combining the three systems produced a better performance than even the best single system.
    關聯: Journal of the American Medical Informatics Association, Volume 19, Issue 5, 2012, Pages 888-896
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1136/amiajnl-2012-000808
    DOI: 10.1136/amiajnl-2012-000808
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML648检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈