English  |  正體中文  |  简体中文  |  Items with full text/Total items : 87924/117065 (75%)
Visitors : 23345868      Online Users : 41
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/75199
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/75199


    Title: Sentiment classification of short Chinese sentences
    Authors: Sun, Ying-Tse;Chen, C.-L.;Liu, C.-C.;Liu, Chaolin;Soo, V.-W.
    劉昭麟
    Contributors: 資科系
    Keywords: Chinese sentence;Classification methods;Classification tasks;Probabilistic modeling;Sentiment classification;Statistical information;Text classification;Classification (of information);Computational linguistics;Speech processing;Text processing;Internet
    Date: 2010
    Issue Date: 2015-05-20 17:03:26 (UTC+8)
    Abstract: We explore an extreme case of text classification. The short statements in micro-blogs were collected, and were associated by a category based on the sentiment indicated by the associated icons. We evaluated different methods that assigned the categories with just the wordings in the short statements. Short statements in micro-blogs are harder to classify because of the shortage of context, yet it is not rare for the statements to include words that may be linked to sentiments directly. In this work, we considered two polarities of sentiments: negative and positive. We employed the statistical information about the word usage, a dictionary for Chinese synonyms, and an emotional phrases dictionary to convert short statements into vectors, and applied techniques of support vector machines and probabilistic modeling for the classification task. The results of classification varied with the classification methods and experimental setups. The best one exceeded 80%, but the lowest just made 55%.
    Relation: Proceedings of the 22nd Conference on Computational Linguistics and Speech Processing, ROCLING 2010
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML491View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback