政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75227
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88987/118693 (75%)
造访人次 : 23570040      在线人数 : 111
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75227


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/75227


    题名: Spatial interpolation using MLP-RBFN hybrid networks
    作者: Kuo, Yau-Hwang
    郭耀煌
    Huang, K.-C.
    Yeh, I.-C.
    贡献者: 資科系
    关键词: artificial neural network;interpolation;rainfall;spatial analysis;spatial distribution;Taiwan
    日期: 2013-10
    上传时间: 2015-05-21 16:15:55 (UTC+8)
    摘要: It is easy for a multi-layered perception (MLP) to fit a stratified spatial interpolation pattern whose form is close to open surface; while it is easy for a radial basis function network (RBFN) to fit a pocket (radial) spatial interpolation pattern whose form is close to closed surface. However, in the real world, the spatial interpolation pattern may consist of stratified and pocket patterns. Neither MLP nor RBFN can fit the pattern easily. To combine their advantages to fit the complex hybrid spatial interpolation patterns, in this article we propose a novel neural network, MLP-RBFN hybrid network (MRHN), whose hidden layer contains sigmoid and Gaussian units at the same time. Although there are two kinds of processing units in MRHN, in this study we used the principle of minimizing the error sum of squares to derive the supervised learning rules for all the network parameters. This research took rainfall distribution in Taiwan as a case study. The results show that (1) the prediction error of the testing dataset outside the training dataset demonstrated that MRHN was the most accurate among the three networks, RBFN was the next best, and MLP was the worst; (2) the MLP model seriously underestimated the values of high observed rainfall; (3) over-learning may be a serious shortcoming of using RBFN in spatial interpolation applications; (4) MRHN may have better generalization learning capacity than RBFN in spatial interpolation applications. © 2013 Taylor & Francis.
    關聯: International Journal of Geographical Information Science, 27(10), 1884-1901
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1080/13658816.2013.769050
    DOI: 10.1080/13658816.2013.769050
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1884-1901.pdf1076KbAdobe PDF440检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈