English  |  正體中文  |  简体中文  |  Post-Print筆數 : 20 |  Items with full text/Total items : 90029/119959 (75%)
Visitors : 24035256      Online Users : 106
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75648
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/75648


    Title: An approach to discover and recommend cross-domain bridge-keywords in document banks
    Authors: Su, Yu-Min
    蘇育民
    Hsu, P.-Y.
    Contributors: 資科系
    Date: 2010
    Issue Date: 2015-06-10 15:05:27 (UTC+8)
    Abstract: Purpose - The co-word analysis method is commonly used to cluster-related keywords into the same keyword domain. In other words, traditional co-word analysis cannot cluster the same keywords into more than one keyword domain, and disregards the multi-domain property of keywords. The purpose of this paper is to propose an innovative keyword co-citation approach called "Complete Keyword Pair (CKP) method", which groups complete keyword sets of reference papers into clusters, and thus finds keywords belonging to more than one keyword domain, namely bridge-keywords. Design/methodology/approach - The approach regards complete author keywords of a paper as a complete keyword set to compute the relations among keywords. Any two complete keyword sets whose corresponding papers are co-referenced by the same paper are recorded as a CKP. A clustering method is performed with the correlation matrix computed from the frequency counts of the CKPs, for clustering the complete keyword sets. Since keywords may be involved in more than one complete keyword set, the same keywords may end up appearing in different clusters. Findings - Results of this study show that the CKP method can discover bridge-keywords with average precision of 80 per cent in the Journal of the Association for Computing Machinery citation bank during 2000-2006 when compared against the benchmark of Association for Computing Machinery Computing Classification System. Originality/value - Traditional co-word analysis focuses on co-occurrence of keywords, and therefore, cannot cluster the same keywords into more than one keyword domain. The CKP approach considers complete author keyword sets of reference papers to discover bridge-keywords. Therefore, the keyword recommendation system based on CKP can recommend keywords across multiple keyword domains via the bridge-keywords. Copyright © Emerald Group Publishing Limited.
    Relation: Electronic Library, Volume 28, Issue 5, Pages 669-687
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1108/02640471011081951
    DOI: 10.1108/02640471011081951
    Appears in Collections:[資訊科學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    669.pdf270KbAdobe PDF823View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback