English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93861/124308 (76%)
Visitors : 28937069      Online Users : 488
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/75803

    Title: Megaflood analysis through channel networks of the Athabasca Valles, Mars based on multi-resolution stereo DTMs and 2D hydrodynamic modeling
    Authors: Kim, J.-R.;Schumann, G.;Neal, J.C.;Lin, Shih Yuan
    Contributors: 地政系
    Keywords: Flow of water;2D hydrodynamic models;DTM;Mars;Quantitative modeling;Stereo analysis;Surface characteristics;Two-dimensional hydraulic model;Water flows;Hydraulic models
    Date: 2014-09
    Issue Date: 2015-06-15 16:25:13 (UTC+8)
    Abstract: Stereo analysis of in-orbital imagery provides valuable topographic data for scientific research over planetary surfaces especially for the interpretation of potential fluvial activity. The focus of research into planetary fluvial activity has been shifting toward quantitative modeling with various spatial resolution DTMs from visual interpretation with ortho images. Thus in this study, we tested the application of hydraulic analysis with multi resolution Martian DTMs, which were constructed following the approaches of Kim and Muller (2009). Planet. Space Sci. 57 (14), 2095. Subsequently, a two-dimensional hydraulic model was introduced to conduct flow simulation using the extracted 1.2-150 m resolution DTMs. As a result, it was found that the simulated water flows coincided with what might be water eroded geomorphic features over target areas. Moreover, the information acquired from the modeling, such as water depth along the time line, flow direction and travel time, is proving of great value for the interpretation of surface characteristics. Results highlighted the importance of DTM quality for simulating fluvial channel hydraulics across planetary surfaces. © 2014 Elsevier Ltd. All rights reserved.
    Relation: Planetary and Space Science, 99, 55-69
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.pss.2014.04.010
    DOI: 10.1016/j.pss.2014.04.010
    Appears in Collections:[地政學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    55-69.pdf5742KbAdobe PDF539View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback