政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75904
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 109952/140901 (78%)
造访人次 : 46063285      在线人数 : 1112
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75904


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75904


    题名: Team Formation for Generalized Tasks in Expertise Social Networks
    作者: Shan, Man-kwan;Li, Cheng-Te
    沈錳坤
    贡献者: 資科系
    日期: 2010
    上传时间: 2015-06-17 16:22:59 (UTC+8)
    摘要: Given an expertise social network and a task consisting of a set of required skills, the team formation problem aims at finding a team of experts who not only satisfy the requirements of the given task but also communicate to one another in an effective manner. To solve this problem, Lappas et al. has proposed the Enhance Steiner algorithm. In this work, we generalize this problem by associating each required skill with a specific number of experts. We propose three approaches to form an effective team for the generalized task. First, we extend the Enhanced-Steiner algorithm to a generalized version for generalized tasks. Second, we devise a density-based measure to improve the effectiveness of the team. Third, we present a novel grouping-based method that condenses the expertise information to a group graph according to required skills. This group graph not only drastically reduces the search space but also avoid redundant communication costs and irrelevant individuals when compiling team members. Experimental results on the DBLP dataset show the teams found by our methods performs well in both effectiveness and efficiency.
    關聯: IEEE International Conference on Social Computing - SocialCom , pp. 9-16
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1109/SocialCom.2010.12
    DOI: 10.1109/SocialCom.2010.12
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2975检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈