English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92416/122720 (75%)
Visitors : 26249023      Online Users : 103
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/76053


    Title: Neural network models of learning and categorization in multigame experiments
    Authors: Marchiori, Davide;wargline, M.
    馬大衛
    Contributors: 經濟系
    Keywords: article;controlled study;experimental study;game;human;human experiment;learning;nerve cell network;normal human;theory
    Date: 2011
    Issue Date: 2015-06-22 16:08:02 (UTC+8)
    Abstract: Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2 × 2 games.Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium. © 2011 Marchiori and Warglien.
    Relation: Frontiers in Neuroscience, Issue DEC, 論文編號 Article 139
    Data Type: article
    DOI 連結: http://dx.doi.org/10.3389/fnins.2011.00139
    DOI: 10.3389/fnins.2011.00139
    Appears in Collections:[經濟學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    Neural.pdf1155KbAdobe PDF537View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback