English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94188/124659 (76%)
Visitors : 29676781      Online Users : 511
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 會議論文 >  Item 140.119/76496
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/76496

    Title: Trust region Newton methods for large-scale logistic regression
    Authors: Lin, C.-J.;Weng, Ruby Chiu-Hsing;Keerthi, S.S.
    Contributors: 統計系
    Keywords: Approximation algorithms;Classification (of information);Convergence of numerical methods;Mathematical models;Natural language processing systems;Regression analysis;Logistic regression;Quasi Newton approach;Newton-Raphson method
    Date: 2007
    Issue Date: 2015-07-13 15:16:50 (UTC+8)
    Abstract: Large-scale logistic regression arises in many applications such as document classification and natural language processing. In this paper, we apply a trust region Newton method to maximize the log-likelihood of the logistic regression model. The proposed method uses only approximate Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it is faster than the commonly used quasi Newton approach for logistic regression. We also compare it with linear SVM implementations.
    Relation: ACM International Conference Proceeding Series,Volume 227, Pages 561-568
    24th International Conference on Machine Learning, ICML 2007,20 June 2007 through 24 June 2007,Corvalis, OR
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1145/1273496.1273567
    DOI: 10.1145/1273496.1273567
    Appears in Collections:[統計學系] 會議論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback