English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89686/119522 (75%)
Visitors : 23946031      Online Users : 145
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/76693
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/76693


    Title: A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index
    Authors: Wu, Berlin
    吳柏林
    Tse, S.-M.
    Hsu, Y.-Y.
    Contributors: 應數系
    Keywords: Decision making;Finance;Forecasting;Knowledge based systems;Markov processes;Mathematical models;Matrix algebra;Regression analysis;Time series analysis;Bivariate fuzzy time series analysis;Fuzzy relation equations;Mean absolute forecasting accuracy;Stock index;Fuzzy sets
    Date: 2003-12
    Issue Date: 2015-07-20 17:21:42 (UTC+8)
    Abstract: In recent years, the innovation and improvement of forecasting techniques have caught more and more attention. Especially, in the fields of financial economics, management planning and control, forecasting provides indispensable information in decision-making process. If we merely use the time series with the closing price array to build a forecasting model, a question that arises is: Can the model exhibit the real case honestly? Since, the daily closing price of a stock index is uncertain and indistinct. A decision for biased future trend may result in the danger of huge lost. Moreover, there are many factors that influence daily closing price, such as trading volume and exchange rate, and so on. In this research, we propose a new approach for a bivariate fuzzy tune series analysis and forecasting through fuzzy relation equations. An empirical study on closing price and trading volume of a bivariate fuzzy time series model for Taiwan Weighted Stock Index is constructed. The performance of linguistic forecasting and the comparison with the bivariate ARMA model are also illustrated.
    Relation: International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 11(6), 671-690
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1142/S0218488503002478
    DOI: 10.1142/S0218488503002478
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    671-690.pdf2049KbAdobe PDF532View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback