English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23399616      Online Users : 125
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/77172
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/77172


    Title: 適用於動態環境中偵測離群值之決策支援機制
    A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment
    Authors: 林哲緯
    Contributors: 蔡瑞煌
    Tsaih, Rua Huan
    林哲緯
    Keywords: 離群值偵測
    概念飄移
    移動視窗
    神經網路
    決策支援
    outlier detection
    concept drifting
    moving window
    neural networks
    decision support
    Date: 2015
    Issue Date: 2015-08-03 13:19:50 (UTC+8)
    Abstract: 近來,偵測離群值已成為一個重要且具有挑戰性的研究議題。從給定之觀察值中我們可以推導出一個適配函數(fitting function),並依照距離此適配函數之距離決定出離群值(outlier)。而此議題在現今的環境中,更為困難:因現今之資料來源多為動態性且不穩定的環境,造成現在的資料具有概念飄移(concept drifting)之特性。
    因此本研究提出一個創新的決策支援機制,幫助決策者於動態環境且具概念飄移的特性之資料偵測出離群值。具體而言,本研究希望在網路安全的領域,透過推導出的決策支援機制找出潛在的異常或具攻擊的行為。
    本研究推導出的決策支援機制具有下列特點:
    (1)使用自適應的單一隱藏層倒傳遞神經網路(single-hidden layer feed-forward neural networks, SLFN)來實作出穩健學習(resistant learning)之概念;
    (2)透過移動視窗(moving window)機制實現增量學習(incremental learning)之策略;
    (3)兼具效率及效能的決策支援:具備良好的偵測結果,且僅列舉出少量的潛在離群值給決策者。
    此研究同時具有實驗進行驗證,實驗結果顯示此決策支援機制是非常具有前途的。
    Outliers are observations far away from the fitting function that is deduced from the bulk of the given observations. Recently, to detect them has become an important issue. Since the data nature in the current era has become more concept-drifting, the outlier detection has become more challenging. To address this challenging issue, this study develops a decision support mechanism (DSM) for coping with the outlier detection problem in the concept-drifting environment. Specifically, this study wants to derive a DSM for identifying the potential intrusion detection in network security. The proposed DSM has the following features: (1) the implementation of the resistant learning concept via the adaptive single-hidden layer feed-forward neural networks, (2) the implementation of the incremental learning concept via the moving window technique, and (3) the efficiency and effectiveness in terms of having to review a much less amount of sample and getting a better accuracy of outlier detection. An experiment is designed to justify the proposed DSM. Experiment results show that the performance of proposed DSM is very promising.
    Reference: Babcock, B., Datar, M., & Motwani, R. (2002). Sampling from a moving window over streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms Society for Industrial and Applied Mathematic, 633-634.
    Babu, S., & Widom, J. (2001). Continuous queries over data streams. ACM Sigmod Record, 30(3), 109-120.
    Banerjee, A. (2012). Density-based evolutionary outlier detection. In Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, 651-652.
    Barnett, V., & Lewis, T. (1994). Outliers in statistical data (Vol. 3), Wiley, New York.
    Basu, S., & Meckesheimer, M. (2007). Automatic outlier detection for time series: an application to sensor data. Knowledge and Information Systems, 11(2), 137-154.
    Bezdek, J. C. (1994). What is computational intelligence? , Computational Intelligence: Imitating Life, 1-12.
    Bifet, A., Gama, J., Pechenizkiy, M., & Zliobaite, I. (2011). Handling concept drift: Importance, challenges and solutions. PAKDD-2011 Tutorial, Shenzhen, China.
    Bilge, L., & Dumitras, T. (2012). Before we knew it: an empirical study of zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on Computer and communications security, 833-844.
    Buschermöhle, A., Schoenke, J., & Brockmann, W. (2012). Uncertainty and Trust Estimation in Incrementally Learning Function Approximation. In Advances on Computational Intelligence (pp. 32-41). Heidelberg: Springer Berlin.
    Castelo-Fernández, C., De Rezende, P. J., Falcão, A. X., & Papa, J. P. (2010). Improving the accuracy of the optimum-path forest supervised classifier for large datasets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 467-475). Heidelberg: Springer Berlin.
    Chen, C., & Liu, L. M. (1993). Forecasting time series with outliers. Journal of Forecasting, 12(1), 13-35.
    Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. London: Chamman and Hall.
    Crawford, K. D., & Wainwright, R. L. (1995). Applying Genetic Algorithms to Outlier Detection. In ICGA, 546-550.
    Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. Neural Networks, IEEE Transactions on, 22(10), 1517-1531.
    Ferdousi, Z., & Maeda, A. (2006). Unsupervised outlier detection in time series data. In Data Engineering Workshops, 2006. Proceedings. 22nd International Conference on IEEE, x121-x121.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4), 44.
    Hawkins, D. M. (1980). Identification of outliers (Vol. 11), London: Chapman and Hall.
    Hawkins, S., He, H., Williams, G., & Baxter, R. (2002), Outlier detection using replicator neural networks, Warehousing and Knowledge Discovery (pp. 170-180). Berlin Heidelberg: Springer.
    He, H. (2011). Self-adaptive systems for machine intelligence. John Wiley & Sons.
    Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126.
    Huang, S. Y., Yu, F., Tsaih, R. H., & Huang, Y. (2014). Resistant learning on the envelope bulk for identifying anomalous patterns. In Neural Networks (IJCNN), 2014 International Joint Conference on, 3303-3310.
    Joo, D., Hong, T., & Han, I. (2003). The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Expert Systems with Applications, 25(1), 69-75.
    Krawczyk, B., & Woźniak, M. (2014). One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft Computing, 1-14.
    Lanquillon, C., & Renz, I. (1999). Adaptive information filtering: Detecting changes in text streams. In Proceedings of the eighth international conference on Information and knowledge management, 538-544.
    Lin, H. C. (2013), ‘An Application of Streaming Data Analysis on TAIEX Futures’, Unpublished Master dissertation, Natioal Cheng-chi University, Taipet , TW.
    Maggi, F., Robertson, W., Kruegel, C., & Vigna, G. (2009). Protecting a moving target: Addressing web application concept drift. In Recent Advances in Intrusion Detection (pp. 21-40). Springer Berlin Heidelberg.
    Masud, M. M., Chen, Q., Khan, L., Aggarwal, C., Gao, J., Han, J., & Thuraisingham, B. (2010). Addressing concept-evolution in concept-drifting data streams. In Data Mining (ICDM), 2010 IEEE 10th International Conference on, 929-934.
    Masud, M. M., Gao, J., Khan, L., Han, J., & Thuraisingham, B. (2011). Classification and novel class detection in concept-drifting data streams under time constraints. Knowledge and Data Engineering, IEEE Transactions on, 23(6), 859-874.
    Navvab Kashani, M., Aminian, J., Shahhosseini, S., & Farrokhi, M. (2012). Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique. Chemical Engineering Research and Design, 90(7), 938-949.
    Olson, D. L., & Shi, Y. (2007). Introduction to business data mining. Englewood Cliffs: McGraw-Hill/Irwin.
    Rousseeuw, P. J., & Van Driessen, K. (2006). Computing LTS regression for large data sets. Data mining and knowledge discovery, 12(1), 29-45.
    Sendhoff, B., Körner, E., Sporns, O., Ritter, H., & Doya, K. (Eds.). (2009). Creating Brain-Like Intelligence: from basic principles to complex intelligent systems (Vol. 5436). Springer Science & Business Media.
    Song, J., Takakura, H., & Kwon, Y. (2008). A generalized feature extraction scheme to detect 0-day attacks via IDS alerts. In Applications and the Internet, 2008. SAINT 2008. International Symposium on (pp. 55-61). IEEE.
    Srinoy, S. (2007). Intrusion detection model based on particle swarm optimization and support vector machine. In Computational Intelligence in Security and Defense Applications, 2007. CISDA 2007. IEEE Symposium on , 186-192.
    Stanley, K. O. (2003). Learning concept drift with a committee of decision trees. Informe técnico: UT-AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin, USA.
    Storkey, A. (2009). When training and test sets are different: characterizing learning transfer. Dataset shift in machine learning, 3-28.
    Sykacek, P. (1997). Equivalent error bars for neural network classifiers trained by Bayesian inference. In ESANN.
    Tolvi, J. U. S. S. I. (2002). Outliers and Predictability in Monthly Stock Market Index Returns. Liiketaloudellinen aikakauskirja, 369-380.
    Tsaih, R. H., & Cheng, T. C. (2009). A resistant learning procedure for coping with outliers. Annals of Mathematics and Artificial Intelligence, 57(2), 161-180.
    Tsay, R. S. (2014). An Introduction to Analysis of Financial Data with R., Wiely.
    Tsymbal, A. (2004). 'The problem of concept drift: definitions and related work'. Computer Science Department, Trinity College Dublin.
    Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 226-235.
    Warren S. (1983), Cubic Clustering Criterion, SAS Technical Report, A-108, SAS Institute Inc., Wiley.
    Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1), 69-101.
    Windham, M. P. (1995). Robustifying model fitting. Journal of the Royal Statistical Society. Series B (Methodological), 599-609.
    Wrótniak, K., & Woźniak, M. (2013). Combined Bayesian Classifiers Applied to Spam Filtering Problem. In International Joint Conference CISIS’12-ICEUTE´ 12-SOCO´ 12 Special Sessions (pp. 253-260). Springer Berlin Heidelberg.
    Yoon, K. A., Kwon, O. S., & Bae, D. H. (2007). An approach to outlier detection of software measurement data using the k-means clustering method. In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposiu, 443-445.
    Zimek, A., Campello, R. J., & Sander, J. (2014). Ensembles for unsupervised outlier detection: challenges and research questions a position paper. ACM SIGKDD Explorations Newsletter, 15(1), 11-22.
    Description: 碩士
    國立政治大學
    資訊管理研究所
    102356002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102356002
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    600201.pdf5308KbAdobe PDF262View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback