English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94188/124659 (76%)
Visitors : 29679504      Online Users : 434
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/77406

    Title: Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability
    Authors: Huang, Chuen-Lin;Chao, Chih-Chang;Lee, Yi-Chao;Lu, Mei-Kuang;Cheng, Jing-Jy;Yang, Ying-Chen;Wang, Vin-Chi;Chang, Wen-Chang;Huang, Nai-Kuei
    Contributors: 神經科學研究所
    Keywords: Mitochondrial membrane permeability;Mitochondrial permeability transition pores;Mitochondrial apoptosis-induced channels;Paraquat;Parkinson’s disease
    Date: 2015-05
    Issue Date: 2015-08-05 14:11:05 (UTC+8)
    Abstract: Paraquat (PQ) as a Parkinsonian mimetic has been demonstrated to impair dopaminergic (DAergic) neurons and is highly correlated with the etiology of Parkinson’s disease (PD) where the death of DAergic neurons has been mainly attributed to impaired mitochondrial functioning. In this study, PQ-induced cytotoxicity focusing on mitochondrial membrane permeability (MMP), which has been implicated to play a part in neurodegeneration, was investigated. Primarily, PQ-induced cytotoxicity and reactive oxygen species (ROS) were inhibited by an inhibitor of NADPH oxidase (NOX), indicating the toxic effect of PQ redox cycling. Further, dibucaine and cyclosporin A which respectively inhibit mitochondrial apoptosis-induced channels (MAC) and mitochondrial permeability transition pores (mPTP) were used and found to prevent PQ-induced mitochondrial dysfunction, such as decreased mitochondrial membrane potential and increased MMP, mitochondrial ROS, and pro-apoptotic factor release. Knockdown of bax and/or bak blocked PQ-induced mitochondrial clusterization of Bax and/or Bak and cytotoxicity, demonstrating the significance of MAC which is composed of Bax and/or Bak. This clusterization coincided with the release of mitochondrial apoptotic factors before there was an increase in inner MMP, indicating that MAC may precede mPTP formation. Besides, NOX inhibitor but not dibucaine attenuated the earlier PQ-induced cytosolic ROS formation or Bax and/or Bak clusterization indicating PQ redox cycling may account for MAC formation. In this model, we have resolved for the first that PQ cytotoxicity through redox cycling may sequentially result in increased outer (MAC) and inner (mPTP) MMP and suggested MMP could be implicated as a therapeutic target in treating neurodegenerative diseases like PD.
    Relation: Molecular Neurobiology
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1007/s12035-015-9198-y
    DOI: 10.1007/s12035-015-9198-y
    Appears in Collections:[神經科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    s12035-015-9198-y.pdf8186KbAdobe PDF787View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback