English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92429/122733 (75%)
Visitors : 26350984      Online Users : 678
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/77972
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/77972

    Title: Post-Modern Portfolio Theory for Information Retrieval
    Authors: Tsai, Ming-Feng;Wang, Chuan-Ju
    Contributors: 資科系
    Keywords: Retrieval models;Optimization;Semivariance
    Date: 2012
    Issue Date: 2015-08-24 15:19:59 (UTC+8)
    Abstract: Information Retrieval (IR) aims to discover relevant information according to a user's information need. The classic Probability Ranking Principle (PRP) forms the theoretical basis for probabilistic IR models. This ranking principle, however, neglects the uncertainty introduced through the estimations from retrieval models. Inspired by the Post-Modern Portfolio Theory (PMPT), this paper proposes a mean-semivariance framework to handle the uncertainty. The proposed framework not only deals with the uncertainty but has the ability to distinguish bad surprises (downside uncertainty) and good surprises (upside uncertainty) when optimizing a ranking list. The experimental results shows that the proposed method improves the IR performance over the PRP baseline in terms of most of IR evaluation metrics; moreover, the results suggest that the mean-semivariance framework can further boost the top-position ranking quality.
    Relation: Procedia Computer Science, 13, 80-85
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.procs.2012.09.116
    DOI: 10.1016/j.procs.2012.09.116
    Appears in Collections:[資訊科學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    80-85.pdf333KbAdobe PDF446View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback