English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89685/119491 (75%)
Visitors : 23936535      Online Users : 27
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/79210


    Title: 奈米碳管和石墨烯與過渡金屬原子鍊的吸附複合材料:第一原理計算研究
    Composites of a carbon nanotube and graphene with the adsorption of transition-metal atomic chains: A first-principles study
    Authors: 許庭維
    Hsu, Ting Wei
    Contributors: 楊志開
    Yang, Chih Kai
    許庭維
    Hsu, Ting Wei
    Keywords: 奈米碳管
    奈米石墨帶
    過渡性金屬線
    石墨烯
    複合性材料
    局域密度近似
    投影擴充波方法
    第一原理計算
    carbon nanotube
    graphene nanoribbon
    transition-metal atomic chains
    graphene
    Composite materials
    local-density approximation
    projector augmented-wave method
    A first-principles study
    Date: 2015
    Issue Date: 2015-11-02 14:50:59 (UTC+8)
    Abstract: 碳為IV A族,因為每個碳原子有2S 與2P軌域,所以共有四個空缺可以填入電子。碳的同素異形體有很多種類,最常見的有石墨、鑽石及石墨烯(graphene)。這些同素異形體之間的物理性質(外表、硬度、電導率)都具有極大的差異。所以,我找了之前最熱門的的兩個材料去計算,一個為奈米碳管(carbon nanotube)的材料,它的能帶結構可以隨著半徑的長短改變。另一個為奈米石墨帶(graphene nanoribbon)的材料,它具有半導體的特性,而且電子性質與其邊界結構與材料寬度有關。
    奈米碳管與奈米石墨帶之間的交互作用主要來自凡得瓦力,但是凡得瓦力是很微弱的力。因此我選用過渡性金屬線,把它放入兩者之間,來加強彼此之間的鍵結能力。因為過渡金屬擁有3d軌域,所以它的性質與其他元素有明顯差別。還有金屬的磁性原理需要從電子的自旋與其結構的軌道角動量去做解釋,所以依照原子序的排列方式,再去進一步探討對磁結構的影響。
    故我想探討奈米碳管和奈米石墨帶並在之間吸附過渡性金屬線的複合性材料,本論文使用Vienna Ab initio Simulation Package (VASP) 並且採用局域密度近似(local-density approximation, LDA)與投影擴充波方法(projector augmented-wave method, PAW)的模型去計算此結構,分析磁性分布、能帶、電荷密度等等。在此計算推測過渡性金屬中的鐵磁性元素與非磁性元素分類法對此結構吸附占有決定性差別。
    Carbon IV A family, because each carbon atom 2S and 2P orbital, so there are four vacancies can be filled electronic. Carbon allotropes there are many types, the most common are graphite, diamond and graphene. Physical properties (appearance, hardness, conductivity) between these allotropes are great differences. So, I find two of the most popular early to calculate the material, a carbon nanotube of material, its energy band structure may change with the length of the radius. Another material is graphene nanoribbon , it has the characteristics of a semiconductor, and electronic properties of its border width related structures and materials.
    Interactions between carbon nanotubes and graphene nanoribbon mainly from the Van der Waals force, but Van der Waals force is very weak force. So I chose a transition metal wire, put it between the two, the purpose is to strengthen the bond capacity between each other. Because the transition metal has 3d orbitals, it's properties a significant difference with the other elements. There are metal magnetic principle needs to be done to explain the electron spin and the structure of its orbital angular momentum, so in accordance with the atomic arrangement, to go further investigate the effect of the magnetic structure.
    Therefore, I would like to explore with carbon nanotubes and nano-graphite and composite materials in adsorption between transition metal wire, the paper using Vienna Ab initio Simulation Package (VASP) and using the local density approximation (local-density approximation, LDA ) and projected expansion wave method (projector augmented-wave method, PAW) model to calculate this structure, analyze magnetic distribution, energy bands, charge density and so on.
    Reference: 參考資料
    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306 666.
    2. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, J. Phys. Chem. B, 2004, 108, 19912.
    3. Y. W. Tan, H. L. Stormer and P. Kim. Nature, 2005, 438, 201.
    4. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Nat. Phys., 2006, 104, 2, 177
    5. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60, 2204; Phys. Rev. B: Condens. Matter, 1992, 46, 1804.
    6. T. W. Odom, J. L. Huang, P. Kim and C. W. Lieber, J. Phys. Chem. B, 2000, 104, 2794.
    7. F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu and M. F. Lin, Phys, Rev. B: Condens. Matter, 2003, 67, 045405.
    8. L. C. Qin, Phys. Chem. Phys., 2007, 9, 31.
    9. K. Nakada, M. Fujita, G. Dresseelhaus and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter. 1996, 54, 17954.
    10. M. Ezawa, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 045432.
    11. Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2003, 97, 216803.
    12. L. Yang, C. H. Park, Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2007, 99, 186801.
    13. S. Okada, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 041408.
    14. Y. W. Son, M. L. Cohen and S. G. Louie, Nature, 2006, 444, 347.
    15. L. Pisani, J. A. Chan, B. Montanari and N. M. Harrison, Phys. Rev. B: Condens. Mater. Phys., 2007, 75, 064418.
    16. A. Thess, R.Lee, P. Nikolaev, H. Dai, P. Petit, J.Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Toma’nek, J. E. Fischer and R. E. Smalley, Science, 1996, 273, 483.
    17. Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, S. C. Chen and M. F. Lin, Carbon, 2004, 42, 3159.
    18. S. Latil and L. Henrard, Phys. Rev. Lett., 2006, 97, 036803.
    19. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga. A. F. Morpurgo and S. Tarucha, Nanotechnol., 2009, 4, 383.
    20. D. Yu and L. Dai, J. Phys. Chem. Lett., 2010, 1, 467.
    21. C. H. Lee, C. K. Yang, M. F. Lin, C. P. Chang and W. S. Su, Phys. Chem. Phys.2010, 13, 3925.
    22. C. K. Yang, J. Zhao and J.P. Lu, Nano Lett., 2004, 4, 561.
    23. E-J. Kan, H. J. Xiang, J. Yang and J. G. Hou, J. Chem. Phys.,2007, 127, 164706.
    24. H. Sevincli, M. Topsakal, E. Durgun and S. Ciraci, Phys. Rev. B: Condens. Mater. Phys., 2008, 77, 195434.
    25. M. Koleini, M. Paulsson and M. Brandbyge, Phys. Rev. Lett., 2007, 98, 197202.
    26. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Mater, 1996, 54, 11169.
    27. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
    28. J. –K. Lee, S. –C. Lee, Ahn, S. –C. Kim, J. I. B. Wilson and P. John, J. Chem. Phys., 2008, 129, 234709.
    29. Chi-Hsuan Lee and Chih-Kai Yang, RSC Advances, 2012, 2, 9958-9963.
    30. J. C. Tung and G. Y. Guo, Phys. Rev. B 83, 144403
    31. J. C. Tung and G. Y. Guo, Phys. Rev. B 76, 094413
    Description: 碩士
    國立政治大學
    應用物理研究所
    101755002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101755002
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500201.pdf5862KbAdobe PDF593View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback