English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93932/124380 (76%)
Visitors : 29025677      Online Users : 423
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/80761

    Title: 分解合成系列快速計算法之平行化改進
    Other Titles: The parallel computing implement for split-and-combine series techniques
    Authors: 曾正男
    Contributors: 應數系
    Keywords: 分解合成;多元尺度;平行化;Split-and-combine;MDS;parallel
    Date: 2014-10
    Issue Date: 2016-01-25 11:13:09 (UTC+8)
    Abstract: 本計畫是將split and combine 系列的演算法推廣到平行計算,我們利用Python 程式的架構成功的將此系列的加速法推廣到多核心計算以及GPU 的計算。對於split and combine系列的計算法如何分群是一個重要的關鍵,我們經過這次的計畫補助理解了如何有效率的分群,讓分解合成計算更有效率。特別在資料維度高以及資料量大時,我們平行化的版本程式表現會更為優異。
    We have implement the SCMDS method from the serial version to the multicore version. We use the python programming to do this work. Our project gives a very friendly introduction for parallel programming in python. In our experiments, we can see that the performance of multicore version of SCMDS makes the linear SCMDS better. When the data dimension is large and the size of data is huge, the performance of parallel version is pretty well. This parallel SCMDS is proved to be good for large data analysis.
    Relation: 科技部
    計畫編號: NSC 102-2115-M-004-003
    Data Type: report
    Appears in Collections:[應用數學系] 國科會研究計畫

    Files in This Item:

    File SizeFormat
    408920.pdf2368KbAdobe PDF1530View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback