English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94586/125118 (76%)
Visitors : 30596961      Online Users : 236
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/83252
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/83252

    Title: 二項分配之序貫估計
    Estimations Following Sequential Comparison of Two Binomial Populations
    Authors: 丁大宇
    Ting, Da-Yu
    Contributors: 翁久幸
    Weng, Chiu-Hsing
    Ting, Da-Yu
    Keywords: binary data
    confidence sets
    sequential estimations
    signed-root transformation
    Date: 2000
    Issue Date: 2016-03-31 14:44:58 (UTC+8)
    Abstract: Consider sequential trials comparing two treatments with binary responses. The goal is to derive accurate confidence sets for the treatment difference and the individual success probabilities of the two treatments. We shall begin with the signed-root transformation as a pivot and then apply the approximate theory of Weng and Woodroofe [11] to form accurate confidence sets of these parameters. The explicit correction terms of the pivots are obtained. The simulation studies agree well with the theoretical results.
    Reference: [1] P. Armitage. Numerical studies in the sequential estimation of a binomial parameter. Biometrika, 45:1-15, 1958.
    [2] I.V. Basawa and B. L. S. P. Rao, Stochastic Process. Academic Press, London, 1980.
    [3] M. N. Chang. Confidence intervals for a normal mean following a group sequential test. Biometrics, 45:247-254, 1989.
    [4] D. S. Coad and M. Woodroofe. Corrected confidence intervals after sequential testing with applications to survival analysis. Biometrika, 83:763-777, 1996.
    [5] K. M. Facey and J. Whitehead. An improved approximation for calculation of confidence intervals after a sequential clinical trial. Statist. Med., 9:1277-1285, 1990.
    [6] G. L. Rosner and A. A. Tsiatis. Exact confidence limits following group sequential test. Biometrika, 75:723-729, 1988.
    [7] D. Siegmund. Estimation following sequential testing. Biometrika, 65:341-349, 1978.
    [8] D. Siemund. Sequential Analysis. Springer, New York, 1985.
    [9] S. Todd and J. Whitehead. Confidence interval calculation for a sequential clinical trial of binary responses. Biometrika, 84:737-743, 1997.
    [10] S. Todd, J. Whitehead, and K. M. Facey. Point and interval estimation following a sequential clinical trial. Biometrika, 83:453-461, 1996.
    [11] R. C. Weng and M. Woodroofe. Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels. Statistica Sinica, 10:693-713, 2000.
    [12] J. Whitehead. The Design and Analysis of Sequential Clinical Trials. Ellis Horwood, Chichester, 1983.
    [13] M. Woodroofe. Very weak expansions for sequentially designed experiments: linear models. Ann. Statist., 17:1087-1102, 1989.
    [14] M. Woodroofe. Estimation after sequential testing : A simple approach for a truncated sequential probability ratio test. Biometrika, 79:347-353, 1992.
    [15] M. Woodroofe. Integrable expansions for posterior distributions for one-parameter exponential families. Statistica Sinica, 2:91-111, 1992.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001946
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    There are no files associated with this item.

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback