English  |  正體中文  |  简体中文  |  Items with full text/Total items : 87250/116203 (75%)
Visitors : 23278531      Online Users : 477
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/84116
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/84116


    Title: Dealing with Noisy Data on Point Cloud Models
    Authors: Lin, Y.-P.;Hsu, K.-W.
    徐國偉
    Contributors: 資科系
    Date: 2014-12
    Issue Date: 2016-04-11 16:04:31 (UTC+8)
    Abstract: Most of the studies working on point cloud data focused on complete and clean data (even though some of them took missing values into account), while in practice we often have to deal with incomplete and unclean data, just as there might be missing values and noise in data. We study noise handling, and we put our focus on processing a noisy point cloud of a visual object or a 3D model. We propose an approach where we first identify data points that might be noise and then lower the impact of the noisy values. To identify noise, we use supervised learning on data whose features are density and distance. To lower the impact of the noisy values, we use triangular surfaces and projection. The experimental results show the effectiveness of the proposed approach. Our contributions are as follows: First, we show how machine learning can help computer graphics. Second, we propose to use distance and density as features in learning for noise identification. Third, we propose to use triangular surfaces and projection to save execution time in noise reduction. Fourth, the proposed approach could be used to improve 3D scanning.
    Relation: IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, December 10-12, 2014, 255-258
    國際標準書號9781479943128
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1109/ISM.2014.40
    DOI: 10.1109/ISM.2014.40
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML337View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback