English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89327/119107 (75%)
Visitors : 23866968      Online Users : 207
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/95253
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/95253


    Title: 多巴胺的神經行為功能-探討內側前額葉皮質處多巴胺在壓力下的角色
    The neurobehavioral functions of dopamine - focusing on the role of medial prefrontal cortex under stress
    Authors: 沈映伶
    Contributors: 廖瑞銘
    沈映伶
    Keywords: 禁錮壓力源
    場地制約偏好行為
    倒序制約
    同時制約
    SCH23390
    raclopride
    Date: 2010
    Issue Date: 2016-05-09 15:25:31 (UTC+8)
    Abstract: 本研究為能瞭解多巴胺在壓力源引發個體古典制約行為學習中的參與角色,採用一個與多巴胺相關的場地制約偏好行為作為研究工具,並利用一較溫和的禁錮壓力源作為非制約刺激與場地環境制約刺激進行配對制約。本研究假設內側前額葉皮質處的多巴胺參與在此壓力源引發場地制約行為學習中。實驗一針對單次禁錮壓力源的非制約刺激效果進行檢驗,分別檢測壓力源對個體的生理、情緒或是行為活動量的影響。實驗二利用「同時制約」或是「倒序制約」等兩種制約方式來進行單次禁錮壓力源引發場地制約偏好行為作業,並分別於制約程序的不同時間點施予多巴胺專屬受器拮抗劑,檢驗多巴胺在制約行為學習作業中的參與。實驗三在「同時制約」或是「倒序制約」兩種制約程序中的不同時間點,施予局部麻醉藥物二丁卡因暫時抑制內側前額葉皮質活動,以檢驗該區塊在單次禁錮壓力源引發場地制約偏好行為下的參與角色。實驗四為了解內側前額葉皮質處多巴胺在單次禁錮壓力源引發場地制約偏好行為中的角色,在「同時制約」程序的不同時間點施打多巴胺專屬受器拮抗劑至內側前額葉皮質區。
    實驗結果發現:本研究所使用的單次30分鐘禁錮壓力源,確實可以引發實驗動物體內的壓力賀爾蒙糖皮質素大量增加、提高焦慮情緒或是降低自發性行為活動量。單次禁錮壓力源在「同時制約」或是「倒序制約」等兩種制約程序下,都能建立場地制約偏好行為。在禁錮壓力源操弄「之前」或「之後」,周邊施打多巴胺D1或是D2專屬受器拮抗劑,在「同時制約」或是「倒序制約」兩種制約程序中都會減抑禁錮壓力源建立場地制約偏好行為的效果。在「倒序制約」方式中,在「實驗動物接受完30分鐘壓力源操弄後被置入制約箱之前」才給予多巴胺拮抗劑,也會破壞後續的配對制約形成。在中樞內側前額葉皮質部分,在「同時制約」或是「倒序制約」兩種制約程序中,二丁卡因在壓力源與環境刺激配對「之前」給予才會抑制禁錮壓力源建立場地制約偏好行為的效果。在壓力源與環境刺激配對「之後」才抑制該處神經活動則不影響壓力源建立制約行為的效果。中樞內側前額葉皮質施予多巴胺D1或是D2專屬受器拮抗劑,也得到前述相同實驗結果。
    本研究的實驗結果證明單次禁錮壓力源確實可以建立場地制約,為另類的古典制約行為。壓力源的操弄可引發多巴胺釋放量增加,及內側前額葉皮質處的多巴胺確實參與了此禁錮壓力源引發場地制約偏好行為。總結本研究結果顯示內側前額葉皮質處多巴胺在壓力下會對制約行為學習造成影響,並冀望此結果可以擴展對於內側前額葉皮質功能失能與心智疾患間關係的瞭解。在演化上,壓力對於人類或是其他族群的生存有其必要性。動物對於其環境中的危險或是威脅事件必須進行行為學習或因應,才能避免生命的損失。
    To investigate the role of dopamine in stressor involved in classical conditioning, the present study used a dopamine-related task, conditioned place preference (CPP), as behavioral measurement. The mild restraint stressor was used and presumed to serve as the unconditioned stimulus to be paired with the contextual conditioned stimulus. The medial prefrontal cortex (mPFC) was hypothesized to be involved in this type of stressor induced place conditioning. Experiment 1 examined the effects of restraint stressor on physiological, emotional or locomotor tests. Experiment 2 investigated the involvement of dopamine in the stressor induced CPP, which conditioning procedures were manipulated by either simultaneous or backward form. The selective dopamine receptor antagonists were systemically administered in different time points during the conditioning procedures. Experiment 3 took lidocaine, a local anesthetic, to induce temporal deactivation of the mPFC. Lidocaine was infused in the mPFC at various time points, in either simultaneous or backward conditioning, to evaluate the involvement of the mPFC in stressor induced place conditioning. To further investigate the effects of dopamine receptors in the mPFC in the present type of CPP, the selective dopamine receptor antagonists were locally infused into the mPFC in simulutaneous conditioning procedure in Experiment 4.
    The results showed that the manipulation of acute 30 min. restraint stressor increased the corticosterone, anxiety, but reduced the locomotor activities in rats. Consitent with previous work, this acute restraint stressor treatment given in either simultaneous or backward conditioning form significantly induced CPP. Systemic injection of dopamine D1 or D2 receptor antagonist given “before” or “after” the manipulation of restraint stressor, in either simultaneous or backward conditioning, attenuated the formation of stressor induced CPP. When these drugs were infused “right after the stressor manipulation and before the commencement of place conditioning” in the backward conditioning, the induction of CPP was also impaired. The attenuation of stressor formed place conditioning was showed when lidocaine was infused in the mPFC “before”, but not “after” the manipulation of restraint stressor. Such an attenuation effect was also seen when the selective D1 or D2 dopamine antagonist was infused in the mPFC.
    The present study showed restraint stressor induced place conditioning as a novel type of classical conditioning. Consistent with the evidence showing that the manipulation of this stressor increases the release of dopamine, this study further verifed that the dopamine in the mPFC is involved in this restraint stressor induced CPP.
    Reference: 沈映伶與廖瑞銘(2007)。〈單次操弄壓力源對場地制約偏好行為學習的影響效果〉。《中華心理學刊》,49, 351-363.
    張雅惠與廖瑞銘(2005)。〈檢測抬高式T形行為之焦慮源〉。《中華心理學刊》,47, 127-138.
    Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry, 52, 1655-1658.
    Agmo, A., & Soria, P. (1999). The duration of the effects of a single administration of dopamine antagonists on ambulatory activity and motor coordination. Journal of Neural Transmission, 106, 219-227.
    Akirav, I., Sandi, C., & Richter-Levin, G. (2001). Stressor and spatial learning: corticosterone and ERK2. European Journal of Neuroscience, 14, 719-725.
    Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, ‘ prefrontal’, and ‘limbic’ functions. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, Corner, M. A. & M. G. P. Feenstra (Eds.), Progress in Brain Research, Vol. 85: The prefrontal cortex: Its structure, function and pathology (pp. 119-146). Amsterdam: Elsevier science.
    Amat, L., Baratta, M. V., Bland, S. T., Paul, E., Watkins, L. R., & Maier, S. F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8, 265-371.
    Arnsten, A. F. T. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Sciences, 2, 435-447.
    Arnsten, A. F. T. (2000). Stress impairs prefrontal cortical function in rats and monkeys: Role of dopamine D1 and norepinephrine α-1 receptor mechanisms. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 133-163). Amsterdam: Elsevier science.
    Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410-422.
    Badyaev, A. V. (2005). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B, 272, 877-886.
    Baker, D. A., Fuchs, R. A., Specio, S. E., Khroyan, T. V., & Neisewander, J. L. (1998) Effects of intraaccumbens administration of SCH-23390 and cocaine-induced locomotion and conditioned place preference. Synapse, 30, 181-193.
    Bardo, M. T., & Neisewander, J. L. (1986). Single-trial conditioned place preference using intravenous morphine. Pharmacology, Biochemistry and Behavior, 25, 1101-1105.
    Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31- 43.
    Berridge, C. W., Mitton, E., Clark, W., & Roth, R. H. (1999). Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse, 32, 187-197.
    Berridge, K. C. (1996). Food reward: Brain substances of wanting and liking. Neuroscience & Biobehavioral Reviews, 20, 1-25.
    Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309-369.
    Besheer, J. B., Jenson, H. C., & Bevins, R. A. (1999). Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats. Behavioural Brain Research, 103, 35-44.
    Bespalov, A. Y. (1996). The expression of both amphetamine - induced place preference and pentylenetetrazol - induced place aversion is attenuated by the NMDA receptor antagonist (±)-CPP. Drug and Alcohol Dependence, 41, 85-88.
    Bevin, R. A., Besheer, J. B., Palmatier, M. I., Jenson, H. C., Pickett, K. S., & Eurek, S. (2002). Novel-object place conditioning: behavioral and dopaminergic processes in expression of novelty reward. Behavioural Brain Research, 129, 41-50.
    Beylin, A. V., & Shors, T. J. (2003). Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Hormones and Behavior, 43, 124-131.
    Blackburn, J. R., Phillips, A. G., & Fibiger, H. C. (1987). Dopamine and preparatory behavior: Ⅰ. Effects of pimozide. Behavioural Neuroscience, 101, 352-360.
    Blanchard, D. C., Blanchard, R. J., & Rodgers, R. J. (1991). Risk assessment and animal models of anxiety. In B. Oliver, J. Mos, & J. L. Slangen (Eds.), Animal models in psychopharmacology (pp. 117-134). Basel: Birkhauser.
    Brabant, C., Quertemont, E., & Tirelli, E. (2005). Influence of the dose and number of drug-context pairings on the magnitude and the long-lasting retentions of cocaine-induced conditioned place preference in C57BL/6J mice. Psychopharmacology, 180, 33-40.
    Buijs, R. M., & Van Eden, C. G. (2000). The integration of stress by the hypothalamus, amygdala and prefrontal cortex: Balance between the autonomic nervous system and the neuroendocrine system. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 117-132). Amsterdam: Elsevier science.
    Cabib, S., Kempf, E., Schleef, C., Mele, A., & Puglisi-Allegra, S (1988). Different effects of acute and chronic stress on two dopamine-mediated behaviors in the rat. Physiology & Behavior, 43, 223-227.
    Cain, S. W., Chou, T., & Ralph, M. R. (2004). Circadian modulation of performance on an aversion – based place learning task in hamsters. Behavioural Brain Research, 150, 201-205.
    Cannon, C. M., & Bseikri, M. R. (2004). Is dopamine required for natural reward? Physiology & Behavior, 81, 741-748.
    Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.
    Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-Hydroxytyramine in Brain. Science, 127, 471.
    Carr, G. D., & White, N. M. (1983). Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sciences, 33, 2551-2557.
    Carr, G. D., Phillips, A. G., & Fibiger, H. C. (1988). Independence of amphetamine reward from locomotor stimulation demonstrated by conditioned place preference. Psychopharmacology, 94, 221-226.
    Carr, G. D., Fibiger, H. C., & Phillips, A. G. (1989). Conditioned place preference as a measure of drug reward. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharmacological basis of reward (pp. 264-319). New York: Oxford University Press.
    Castellano, C., Cestari,V., Cabib, S., & Puglisi-Allegra, S. (1991). Post-training of dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behavioral and Neural Biology, 56, 283-291.
    Cerqueira, J. J., Mailliet, F., Almeida, O. F. X., Jay, T. M., & Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. Journal of Neuroscience, 27, 2781-2787.
    Cerqueira, J. J., Almeida, O. F. X., & Nousa, S. (2008). The stressed prefrontal cortex. Left? Right! Brain, Behavior, and Immunity, 22, 630-638.
    Cheng, R.K., & Liao, R. M. (2007). Dopamine receptor antagonists reverse amphetamine-induced behavioral alteration on a differential reinforcement for low - rate (DRL) operant task in the rat. Chinese Journal of Physiology, 50, 77-88.
    Cordero, I. M., & Sandi, C. (1998). A role for brain glucocorticoid receptors in contextual fear conditioning: Dependence upon training intensity. Brain Research, 786, 11-17.
    Cousin, M. S., Sokolowski, J. D., & Salamone, J. D. (1993). Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology, Biochemistry and Behavior, 46, 943-951.
    Cousins, M. S., & Salamone, J.D. (1994). Nucleus Accumbens dopamine depletions in rat affect relative response allocation in a novel cost/benefit procedure. Pharmacology, Biochemistry and Behavior, 49, 85-91.
    Cousins, M. S., Wei, W., & Salamone, J. D. (1994). Pharmacological characterization of performance on a current leverpressing/feeding choice procedure: Effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology, 116, 529-537.
    Dallman, M. F. (2003). Stress by any other name…? Hormones and Behavior, 43, 18-20.
    Davidson, R. J. (1992). Emotion and affective style: Hemispheric substrates. Psychological Science, 3, 39-43.
    Davis, M. (1992). The role of the amygdala in conditioned fear. In J. P. Aggleton (Eds,), The Amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 255-306). New York: Wiley-Liss, Inc.
    De Bruin, J. P. C., Feenstra, M. G. P., Broersen, L. M., Van Leeuwen, M., Arens, C., De Vries, S., & Joosten, R. N. J. M. A. (2000). Role of the prefrontal cortex of rat in learning and decision making: effects of transient inactivation. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 133-163). Amsterdam: Elsevier science.
    Der-Avakian, A., Will, M. J., Bland, S. T., Deak, T., Nguyen, K. T., Schmid, M. J., Spencer, R. L., Watkins, L. R., & Maier, S. F. (2005). Surgical and pharmacological suppression of glucocorticoids prevents the enhancement of morphine conditioned place preference by uncontrollable stress in rats. Psychopharmacology, 179, 409-417.
    De Kloet, E. R., Vreugdenhil, R., Oitzl, M. S., & Joels, M. (1985). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269-301.
    Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., Costa, R. M., & Sousa, N. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325, 621-625.
    Di Chiara, G., & Imperato, A. (1986). Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol and barbiturates: Studies with transcerebral dialysis in free moving rats. Annuals of New York Academy of Sciences, 473, 367-381.
    Dietz, D., Wang, W., & Kabbaj, M. (2007). Corticosterone fails to produce conditioned place preference or conditioned place aversion in rats. Behavioural Brain Research, 181, 287-291.
    Ettenberg, A., Raven, M. A., Danluck, D. A., & Necessary, B. D. (1999). Evidence for opponent-process actins of intravenous cocaine. Pharmacology, Biochemistry and Behavior, 64, 507-512.
    Feenstra, M. G. P. (2000). Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 133-163). Amsterdam: Elsevier science.
    Fibiger, H. C., & Phillips, A. G. (1988). Mesocorticolimbic dopamine system and reward. Annuals of New York Academy of Sciences, 537,206-215.
    Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898-1902.
    Fouriezos, G.., & Wise, R. A. (1980). Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor performance deficits. Brain Research, 47, 21-27.
    Garcia, A., Marti, O., Valles, A., Zotto, S., & Armario, A. (2000). Recovery of the hypothalamic-pituitary-adrenal response to stress. Effect of stress intensity, stress duration and previous stress exposure. Neuroendocrinology, 72, 114-125.
    Gauvin, D. V., Dormer, K. N., & Holloway, F. A. (1991). Pentylenetetrazol can induce a conditioned place preference. Pharmacology Biochemistry and Behavior, 40, 987-990.
    Glavin, G. B., Pare, W. P., Sandbak, T., Bakke, H-K., & Murison, R. (1994). Restraint stress in biomedical research: An update. Neuroscience & Biobehavioral Reviews, 18, 223-249.
    Goeders, N. E., & Guerin, G. F. (1994). Non-contingent electric footshock facilitates the acquisition of intravenous cocaine self-administration in rats. Psychopharmacology, 114, 63-70.
    Goldman-Rakic, P. S., Muly, E. C., & Williams, G. V.Ⅲ. (2000). D1 receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295-301.
    Goto, Y., Tseng, K. Y., Lewis, B. L., & O’Dennell, P. (2004). Dopamine modulation of prefrontal cortical neural ensembles and synaptic plasticity. In S. Otani (Eds.), Prefrontal cortex: From synaptic plasticity to cognition (pp. 61-84). The Netherland: Kluwer Academic Publishers Group.
    Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system rsponsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1-24.
    Groenewegen, H. J., & Uylings, H. B. M. (2000). The prefrontal cortex and the integration of sensory, limbib and autonomic information. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 3-28). Amsterdam: Elsevier science.
    Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145-173.
    Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27, 555-579.
    Herman, J. P. Guillonneau, D., Dantzer, R., Scatton, B., Semerdjian-Rouquier, L., & Le Moal, M. (1982). Differential effects of inescapable footshock and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sciences, 30, 2207-2214.
    Herman, J. P., Ostrander, M. M., Mueller, N. M., & Figeriredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 1201-1213.
    Hillegaart, V., & Ahlenius, S. (1987). Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacololgy & Toxicology, 60, 350-354.
    Hnasko, T. S., Sotak, B. N., & Palmiter, R. D. (2005). Morphine reward in dopamine-deficient mice. Nature, 438, 854-857.
    Hnasko, T. S., Sotak, B. N., & Palmiter, R. D. (2007). Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. Journal of Neuroscience, 27, 12484-12488.
    Hoffman, D.C., & Beninger, R. J. (1985). The D1 dopamine receptor antagonist, SCH23390 reduces locomotor activity and rearing in rats. Pharmacology, Biochemistry and Behavior, 22, 341-341.
    Hoffman, D.C., & Beninger, R. J. (1989). The effects of selective dopamine D1 or D2 receptor antagonists on the establishment of agonist-induced place conditioning in rats. Pharmacology, Biochemistry and Behavior, 33, 273-279.
    Horvitz, J. C. (2002). Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behavioural Brain Research, 137, 65-74.
    Huang, S., Fang, X., Meng, Y., Chen, Y., Zhang, X., & Zhao, S. (2009). Sympathetic nervous system overreactivity in the wistar rat with proliferative lesions of ventral prostate induced by chronic stress. Urologia Internationalis, 83, 230-235.
    Imperato, A., Angelucci, L., Casolini, P., Zocchi, A., & Puglisi-Allegra, S. (1992). Repeated stressful experiences differential affect limbic dopamine release during and following stress. Brain Research, 577, 194-199.
    Inglis, F.M., & Moghaddam, B. (1999). Dopaminergic innervation of the amygdala is highly responsive to stress. Journal of Neurochemistry, 72, 1088-1094.
    Inoue, T., Tsuchiya, K., & Koyama, T. (1994). Regional changes in dopamine and serotonin activity with various intensity of physiological and psychological stress in the rat brain. Pharmacology Biochemistry and Behavior, 49, 911-920.
    Inoue, T., Izumi, T., Maki, Y., Muraki, I., & Koyama, T. (2000). Effect of dopamine D1/5 antagonist SCH23390 on the acquisition of fear. Pharmacology Biochemistry and Behavior, 66, 573-578.
    Jackson, M. E., & Moghaddam, B. (2004). Stimulus-specific plasticity of prefrontal cortex dopamine neurotransmission. Journal of Neurochemistry, 88, 1327-1334.
    Joels, M. (2006). Corticosteroid effects in the brain: U–shape it. Trends in Pharmacological Sciences, 27, 244-250.
    Joels, M., Pu., Z., Wiegert, O., Oitel, M., & Krugers, H. J. (2006). Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158.
    Kebabian, J. W., & Calne, D. (1979). Multiple receptors for dopamine. Nature, 277, 93-96.
    Kim, J. J., & Diamond, D. M. (2002). The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience, 3, 453-462.
    Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine neurons. Journal of Neuroscience, 28, 7837-7846.
    Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.
    Kurata, K., Tanii, Y., Shibata, R., & Kurachi, M. (1993). Differential effects of tight and loose 2-hour restraint stress on extracellular concentrations on dopamine in nucleus accumbens and anteromedial frontal cortex. The Japanese Journal of Psychiatry and Neurology, 47, 57-61.
    Lalumiere, R. T., Nguyen, L. T., & McGaugh, J. L. (2004). Post-training intrabasolateral amygdalainfusions of dopamine modulate consolidation of inhibitory avoidance memory: Involvement of noradrenergic and cholinergic systems. European Journal of Neuroscience, 20, 2804-2810.
    Lett, B. T., Grant, V. L., Byrne, M. J., & Koh, M. T. (2000). Pairing of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87-94.
    Lett, B. T., Grant, V. L., & Koh, M. T. (2001). Naloxone attenuates the conditioned place preference induced by wheel running in rats. Physiology & Behavior, 72, 355-358.
    Lett, B. T., Grant, V. L., & Koh, M. T. (2002). Delayed backward conditioning of place preference induced by wheel running in rats. Learning and Motivation, 33, 347-357.
    Liao, R. M. (2008). Development of conditioned place preference induced by intra-accumbens infusion of amphetamine is attenuated by co-infusion of dopamine D1 and D2 receptor antagonists. Pharmacology, Biochemistry and Behavior, 89, 367-373.
    Liao, R. M., Chang, Y. H., & Wang, S. H. (1998) Influence of SCH23390 and spiperone on the expression of conditioned place preference induced by d-amphetamine or cocaine in the rat. Chinese Journal of Physiology, 41, 85-92.
    Liao, R. M., Chang, Y. H., Wang, S. H., & Lan, C. H. (2000). Distict accumbal subareas are involved in place conditioning of amphetamine and cocaine. Life Sciences, 67, 2033-2043.
    Lu, L., Shepard, J. D., Hall, F. S., & Shaham, Y. (2003). Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: A review. Neuroscience & Biobehavioral Reviews, 27, 457-491.
    Martijena, I. D., Calvo, N., Volosin, M., & Molina, V. A. (1997). Prior exposure to a brief restraint session facilitates the occurrence of fear in response to a conflict situation: Behavioral and neurochemical correlates. Brain Research, 752, 136-142.
    McEwen, B. S. (1998). Protective and damaging effects of stress mediators. The New England Journal of Medicine, 338, 171-179.
    McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and alloststic overload and relevance to the pathophysiology of psychiatric disorders. In R. Yehuda & B. McEwen (Eds.), Annals of New York Academy of Sciences, Vol. 1032: Biobehavioral stress response: protective and damaging effects (pp. 1-7). New York: The New York Academy of Sciences.
    McGaugh, J. L. (1973). Drug facilitation of learning and memory. Annual Review of Pharmacology, 13, 229-241.
    McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287, 248-251.
    Mercier, S., Canini, F., Buguet,A., Cespuglio, R., Martin, S., & Bourdon, L. (2003). Behavioural changes after an acute stress: Stressor and test types. Behavioural Brain Research, 139, 167-175.
    Meririnne, E., Kajos, M., Kankaanpaa, A., Koistinen, M., Kiianmaa, K., & Seppala, T. (2005). Rewarding properties of the stereoisomers of 4-methylaminorex: Involvement of dopamine system. Pharmacology, Biochemistry and Behavior, 81, 715-724.
    Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D. H., & Tabira, T. (2004). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. The Journal of Neuroscience, 15, 1568-1574.
    Moghaddam, B., & Jackson, M. (2004). Effects of stress on prefrontal cortex function. Neurotoxicity Research, 6, 1-6.
    Murphy, B. L., Arnsten, A. F. T., Goldman-Rakin, P. S., & Roth, R. H. (1996). Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proceedings of National Academy of Sciences of the United States of America, 93, 1325-1329.
    Nakahara, D., & Nakamura, M. (1999). Differential effects of immobilization stress on in vivo synthesis rate of monoamines in the medial prefrontal cortex and nucleus accumbens of conscious rats. Synapse, 32, 238-242.
    Nazarian, A., Russo, S., Festa, E., Karaish, M., & Quinones-Jenab, V. (2004). The role of D1 and D2 receptors in the cocaine conditioned place preference of male and female rats. Brain Research Bulletin, 63, 295-299.
    Oscos, A., Martinez Jr, J. L., & McGaugh, J. L. (1988). Effects of post-training d-amphetamine on acquisition of an appetitive autoshaped lever press response in rats. Psychopharmacology, 95, 132-134.
    Overmier, J. B., & Seligman, M. E. P. (1967). Effects of inescapable shocks on subsequent escape and avoidance learning. Journal of Comparative and Physiological Psychology, 63, 23-33.
    Packard, M. G., & Teather, L. A. (1998). Amygdala modulation of multiple memory system: Hippocampus and caudate-putamen. Neurobiology of Learning and Memory, 69, 163-203.
    Padovan, C. M., & Guimaraes, F. S. (2000). Restraint - induced hypoactivity in an elevated plus-maze. Brazillian Journal of Medical and Biological Research, 33, 79-83.
    Paxinos, G., & Watson, C. (2005). The rat brain in stereotaxic coordinates, 5th ed. Academic Press, San Diego.
    Pecina, S., Smith, K. S., & Berridge, K. C. (2006). Hedonic hot spots in the brain. Neuroscientist, 12, 500-511.
    Pezze., M. A., & Feldon, J. (2004). Mesolimbic dopaminergic pathways in fear conditioning. Progress in Neurobiology, 74, 301-320.
    Phillips, A. G.., Ahn, S., & Howland, J. G. (2003). Amygdalar control of the mesocorticolimbic dopamine system: Parallel pathways to motivated behavior. Neuroscience & Biohehavioral Reviews, 27, 543-554.
    Piazza, P. V., & Le Moal, M. (1998). The role of stress in drug self-administration. Trends in Pharmacological Sciences, 19, 67-74.
    Pierce, R. C., & Kumaresan, V. (2006). The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neuroscience & Biohehavioral Reviews, 30, 215-238.
    Poleszak, E., & Malec, D. (2003). Effects of adenosine receptor agonists and antagonists in amphetamine-induced conditioned place preference test in rats. Polish Journal of Pharmacology, 55, 319-326.
    Quervain, D. J. F., Roozendaal, B., & McGaugh, J. L. (1998). Stress and
    glucocorticoids impair retrieval of long-term spatial memory. Nature, 394, 787-790.
    Quirk, G. J., & Muller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33, 56-72.
    Richardson, N. R., & Gratton, A. (1996). Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food-reinforcement: An electrochemical study in rat. Journal of Neuroscience, 16, 8160-8169.
    Richardson, N. R., & Gratton, A. (1998). Changes in medial prefrontal cortical dopamine levels associated with response-contingent food reward: An electrochemical study in rat. Journal of Neuroscience, 18, 9130-9138.
    Robbins, T. W. (2005). Controlling stress: How the brain protects itself from depression. Nature Neuroscience, 8, 261-262.
    Rose, J. E., & Woolsey, C. N. (1948). The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Research Publications-Association for Research in Nervous and Mental Disease, 27, 210-232.
    Roth, R. H., Tam, S-Y., Ida, Y., Yang, J. X., & Deutch, A. Y. (1988). Stress and the
    mesocorticolimbic dopamine system. Annuals of New York Academy of Sciences, 537,138-147.
    Roth, S., & Cohen, L. J. (1986). Approach, avoidance, and coping with stress. American Psychologist, 813-819.
    Saigusa, T., Tuinstra, T., Koshikawa, N., & Colls, A. R. (1999). High and low responders to novelty: Effects of a catecholamine synthesis inhibitor on novelty induced changes in behavior and release of accumbal dopamine. Neuroscience, 88, 1153-1163.
    Salamone, J. D. (2006). Will the last person who uses the term ”reward” please turn out the light? Comments on processes related to reinforcement, learning, motivation and effort. Cell, 11, 43-44.
    Salamone, J. D., Steinpreis, R. E., McCullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 104, 515-521.
    Salamone, J. D., Correa, M., Mingote, S. M., & Weber, S. M. (2005). Beyond the reward hypothesis: Alterative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 5, 34-41.
    Sapolsky, R. M. (2004). Stress and cognition. In M. S. Gazzaniga (Eds.), The Cognitive Neuroscience Ⅲ (pp. 1031- 1042). Cambridge: MIT press.
    Schulkin, J. (2003). Allostasis: a neural perspective. Hormones and Behavior, 43, 21-27.
    Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1-27.
    Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30, 203-210.
    Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. Journal of Neuroscience, 12, 4595-4610.
    Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
    Selye, H. (1946). The general adaptation syndrome and diseases of adaptation. Journal of Clinical Endocrinology, 6, 117-230.
    Shaham, Y. (1993). Immobilization stress-induced oral opioid self-administration and withdrawal in rats: Role of conditioning factors and the effect of stress on “relapse” to opioid drugs. Psychopharmacology, 111, 477-485.
    Shors, T. J. (2001). Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiology of Learning and Memory, 75, 10-29.
    Shors, T. J. (2004). Learning during stressful times. Learning and Memory, 11, 137-144.
    Shors, T. J. (2006). Stressful experience and learning across the lifespan. Annual Review of Psychology, 57, 55-85.
    Shors, T. J., Seib, T. B., Levine, S., & Thompson, R. F. (1989). Inescapable versus escapable shock modulates long-term potentiation in rat hippocampus. Science, 244, 224 - 226.
    Shors, T. J., & Servatius, R. J. (1997). The contribution of stressor intensity, duration, and context to the stress-induced facilitation of associative learning. Neurobiology of Learning and Memory, 68, 92-96.
    Sokoloff, P., Giros, B., Martres, M-P., Bouthenet, M-L., & Schwartz, J-C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347, 146-151.
    Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: I. temporal dynamics of affect. Psychological Review, 81, 119-145.
    Spyraki, C., Fibiger, H. C., & Phillips, A. G. (1982). Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Research, 253, 185-193.
    Spyraki, C., Kazandjian, A., & Varonos, D. (1985). Diazepam – induced place preference conditioning: Appetitive and aversive properties. Psychopharmacology, 87, 225-232.
    Sullivan, R. M., & Gratton, A. (1998). Relationships between stress-induced increases in medial prefrontal cortical dopamine and plasma corticosterone levels in rats: role of cerebral laterality. Neuroscience, 83, 81-91.
    Swerdlow, N. R., Gilbert, D., & Koob, G. F. (1989). Conditioned drug effects on spatial preference, critical evaluation. In A. A. Boulton., G. B. Baker., & A. J. Greenshaw (Eds.). Psychopharmacology : Neuromethods, Vol. 13. (pp.399-446) New Jersey: Human Press.
    Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307, 1642-1645.
    Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issue. Progress in Neurobiology, 56, 613-672.
    Tzschentke, T. M. (2001). Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in Neurobiology, 63, 241-320.
    Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12, 227-462.
    Tzschentke, T. M., & Schmidt, W. J. (1999). Functional heterogeneity of the rat medial prefrontal cortex: Effects of discrete subarea-specific lesions on dug-induced conditioned place preference and behavioural sensitization. European Journal of Neuroscience, 11, 4099-4109.
    Ungless, M. A. (2004). Dopamine: The salient issue. Trends in Neuroscience, 27, 702-706
    Ungless, M. A., Magill, P. J., & Bolam, P. J. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303, 2040-2042.
    Vallone, D., Picetti, R., & Borrelli, E. (2000). Structure and function of dopamine receptors. Neuroscience & Biobehavioral Reviews, 24, 125-132.
    Van Eden, C. G., & Buijs, R. M. (2000). Functional neuroanatomy of the prefrontal cortex: Autonomic interactions. In H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra, & C. M. A. Pennartz (Eds.), Progress in Brain Research, Vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 49-62). Amsterdam: Elsevier science.
    Van Eden,C. G., Hoorneman, E. M. D., Bujis, R. M., Matthijissen, M. A. H., Geffard,M., & Uylings, H. B. M. (1987). Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopic level. Neuroscience, 22, 849-862.
    Weiss, J. M. (1968). Effects of coping responses on stress. Journal of Comparative and Physiological Psychology, 65, 251-260.
    White, N. M. (1989). Reward or reinforcement: What’s the difference? Neuroscience & Biobehavioral Reviews, 13, 181-186.
    White, N. M., & Milner, P. M. (1992). The psychobiology of reinforcers. Annual Review of Psychology, 43, 443-471.
    White, N, M., Chai, S. C., & Hamdani, S. (2005). Learning the morphine conditioned cue preference: cue configuration determines effects of lesions. Pharmacology, Biochemistry and Behavior, 81, 786 - 796.
    Will, M. J., Watkins, L. R., & Maier, S. F. (1998). Uncontrollable stress potentiates morphine’s rewarding properties. Pharmacology, Biochemistry and Behavior, 60, 655-664.
    Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5, 39-87.
    Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5, 483-494.
    Wise, R. A. (2009). Roles of nigrostriatal-not just mesocorticolimic-dopamine in reward and addiction. Cell, 32, 517-524.
    Wise, R. A., Spindler, J., De Witt, H., & Gerber, G. J. (1978). Neuroleptics- induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science, 201, 262-264.
    Young, E. A., Abelson, J., & Lightman, S. L. (2004). Cortisol pulsatility and its role in stress regulation and health. Frontiers in Neuroendocrinology, 25, 69-76.
    Zarrindast, M. Z., Bahreini, T., & Adl, M. (2002). Effects of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacology, Biochemistry and Behavior, 73, 941-949.
    Zavala, A. R., Weber, S. M., Rice, H. J., Alleweireldt, A. T., & Neisewander, J. L. (2003). Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction and reinstatement of cocaine-conditioned place preference. Brain Research, 990, 157-164.
    Description: 博士
    國立政治大學
    心理學系
    91752502
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0917525021
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML51View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback