English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89686/119522 (75%)
Visitors : 23952515      Online Users : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/95619
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/95619

    Title: 多變量d轉換的一些應用
    Some applications of multivariate d-transformations
    Authors: 郭錕霖
    Contributors: 姜志銘
    Keywords: 多變量d轉換
    multivariate d-transformation
    multivariate d-characteristic function
    Dirichlet distribution
    spherical distribution
    limiting distribution
    inversion process
    Carlson R
    Date: 2002
    Issue Date: 2016-05-09 16:39:17 (UTC+8)
    Abstract:   Jiang (1997) 首先提出多變量d轉換與其性質。利用多變量d轉換,我們可以定義新式的特徵函數,並且稱它們是多變量d特徵函數。在這篇論文中,我們將使用多變量d特徵函數來證明在普通的條件下,Dirichlet隨機向量的線性組合會分配收斂(converge in distribution)到一個對稱的分配。此外,當給定一個分配函數的多變量d特徵函數,我們將建構一個方法來決定此分配函數。另一方面,我們將證明多變量d特徵函數擁有很多類似傳統的特徵函數的性質。
      A multivariate d-transformation and its properties were first given by Jiang (1997). By means of the multivariate d-transformations, we can define new kinds of characteristic functions and call them multivariate d-characteristic functions. In this thesis, we will use the multivariate d-characteristic function to show that the linear combinations of Dirichlet random vectors, under regularity conditions, converge in distribution to a spherical distribution. Moreover, We will construct a method for constructing the distribution function with a given multivariate d-characteristic function. In addition, we will show that the multivariate d-characteristic function has many properties which are similar to those of the traditional characteristic function.
    Abstract i
    中文摘要 ii
    1. Introduction 1
    1.1 The c-characteristic function 1
    1.2 The Ferguson-Dirichlet process 2
    1.3 Compatible conditional distributions 4
    1.4 Inverse Bayes formula 6
    2. Notations and useful equations 7
    2.1 Notations 7
    2.2 Useful equations 8
    3. The c-characteristic function 12
    3.1 The univariate c-characteristic function 12
    3.2 The multivariate c-characteristic function 13
    3.3 Inversion formulas of a univariate c-characteristic function 16
    3.4 Density construction through Fourier transformation 24
    3.5 Distributions of linear combinations of the components of a Dirichlet random vector 25
    4. The Ferguson-Dirichlet process 31
    4.1 Random functionals of a Ferguson-Dirichlet process 31
    4.2 The Ferguson-Dirichlet process over n-dimensional sphere 41
    4.3 Proof of Theorem 4.5 48
    4.4 Proof of Theorem 4.6 55
    5. Compatible conditional distributions 59
    5.1 The bivariate discrete case 59
    5.2 The trivariate discrete case 77
    5.3 The general discrete case 91
    5.4 The bivariate continuous case 93
    5.5 The general continuous case 98
    6. Generalized inverse Bayes formula 102
    6.1 The finite and discrete case 102
    6.2 The continuous case 108
    6.3 Algorithm 115
    7. Conclusions 119
    References 121
    Reference: Apostol, T. M. (1974), Mathematical Analysis, 2nd ed., Addison-Wesley.
    Carlson, B. C. (1977), Special Functions of Applied Mathematics, Academic Press, New York.
    Chung, Kai Lai (1968), A Course in Probability Theory, Harcourt,Brace and World, New York.
    Dickey, J. M. and Jiang, T. J. (1998), "Filtered-Variate Prior Distributions for Histogram Smoothing," Journal of the American Statistical Association, 93, pp. 651--662.
    Erdelyi, A. (1953) (Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G.), Higher Transcendental Functions, vol. I, McGraw-Hill, New York.
    Friedberg, S. H., Insel, A. J., and Spence, L. E. (1992), Linear Algebra, 2nd ed., Prentice-Hall, New York.
    Gradshteyn, I. S. and Ryzbik, I. M.; Alan Jeffrey, editor; Translated from the Russian by Scripta Technica, Inc. (2000), Table of Integrals, Series, and Products, 6th ed., Academic Press, Boston.
    Hogg, Robert V. and Craig, Allen T. (1995), Introduction to Mathematical Statistics, 5th ed., Prentice-Hall, Englewood Cliffs, New Jersey.
    Jiang, J. (1988), "Starlike functions and linear functions of a Dirichlet distributed vector," SIAM J. Math. Anal., 19, pp. 390--397.
    Jiang, T. (1991), "Distribution of random functional of a Dirichlet process on the unit disk," Statistics and Probability Letters, 12, pp. 263--265.
    Jiang, J. (1997), "Multivariate d-transformations with applications," Taiwan National Science Council final report (NSC 85--2121--M--004--007).
    Jiang, T. (2002), "A new multivariate transformation and distribution of random functional of a Dirichlet process on the solid bounded by an ellipse." To be published.
    Lord, R. D. (1954), "The use of the Hankel transformations in statistics. I. General theory and examples," Biometrika, 41, pp. 44--55.
    Marsden, Jerrold E. and Hoffman, Michael J. (1993),Elementary Classical Analysis, 2nd ed., W. H. Freeman and Company, New York.
    Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I. (1986), Integrals and Series, vol. 3, Gordon and Breach Science Publishers, New York.
    Roussas, George G. (1997), A Course in Mathematical Statistics, 2nd ed., Academic Press, San Diego, Calif.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2010000222
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback