English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 90773/120835 (75%)
Visitors : 25108615      Online Users : 334
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/98782
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/98782

    Title: Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting
    Authors: 楊亨利
    Yang, Heng-Li;Lin, Han-Chou
    Contributors: 資管系
    Keywords: Financial time series forecasting · Empirical mode decomposition ·Intrinsic mode function · Phase space reconstruction · Extreme learning machine
    Date: 2017-01
    Issue Date: 2016-07-07 17:02:18 (UTC+8)
    Abstract: Financial time series forecasting has been a challenge for time series analysts and researchers because it is noisy, nonstationary and chaotic. To overcome this limitation, this study uses empirical mode decomposition (EMD) and phase space reconstruction (PSR) to assist in the task of financial time series forecasting. In addition, we propose an approach that combines these two data preprocessing methods with extreme learning machine (ELM). The approach contains four steps as follows. (1) EMD is used to decompose the dynamics of the exchange rate time series into several components of intrinsic mode function (IMF) and one residual component. (2) The IMF and residual time series phase space is reconstructed to reveal its unseen dynamics according to the optimum time delay τ and embedding dimension m. (3) The reconstructed time series datasets are divided into two datasets: training and testing, in which the training datasets are used to build ELM models. (4) A regression forecast model is set up for each IMF as well as the residual component by using ELM. The final prediction results are obtained by compositing the prediction values. To verify the effectiveness of the proposed approach, four exchange rates are chosen as the forecasting targets. Compared with some existing state-of-the-art models, the proposed approach yields superior results. Academically, we demonstrated the validity and superiority of the proposed approach that integrates EMD, PSR, and ELM. Corporations or individuals can apply the results of this study to acquire accurate exchange rate information and reduce exchange rate expenses.
    Relation: Computational Economics, Volume 49, Issue 1, pp 99–116
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1007/s10614-015-9549-9
    DOI: 10.1007/s10614-015-9549-9
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-18.pdf1538KbAdobe PDF420View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback