English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25804973      Online Users : 282
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/99317
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/99317

    Title: 投資組合風險值評估
    Evaluation of Value-At-Risk in Investment Portfolio
    Authors: 劉銘益
    Contributors: 廖四郎

    Keywords: 風險值
    Value at Risk(VaR)
    Historical Simulation Approach
    Variance-Covariance Approach
    Marginal VaR
    Component VaR
    Date: 2016
    Issue Date: 2016-07-20 16:53:31 (UTC+8)
    Abstract: 近年來隨著金融自由化與國際化的發展,各國投資者面對更大的投資機會。然而在享有更多投資機會的同時,卻也使投資者面對更高之風險,進而促使投資者必須針對該風險值加以評估,並採行相關的規避措施。如何利用投資組合的觀念,以規避投資風險且獲得特定的報酬,成為當前投資人最重要的課題。有鑑於此,本研究將風險值的概念與投資組合理論予以合併。

    本文以Markowitz 的平均數-變異數模型(M-V模型)及成長價值指標(Growth Value Index ,GVI) 對在臺灣證券交易所上市之金融類股股票、傳產類股股票、電子類股股票及上市公司,分別進行篩選,以選出最適完整性投資組合,並進一步針對該最適投資組合運用歷史模擬法(Historical Simulation Approach)、變異數-共變異數法(Variance-Covariance Approach)及GARCH模型進行風險值分析,並透過Kupiec (1995) 之非條件與條件涵蓋比率檢定,評估各種風險值模型預測能力之績效。

    實證結果顯示,各種風險值模型的樣本外預測結果顯示,以GARCH模型估計之風險值預測效果為最佳,並將投資組合的風險值細分為邊際風險值(marginal VaR)和成份風險值(component VaR),藉由這項分析,可以提供管理者在作風險管理時更明確的決策方向。
    Recently, with the development of liberalization and globalization in financial markets, investor is faced with more investment opportunity and investment risk simultaneously, and this makes investor evaluate VaR. Therefore, it becomes the most significant topic for investor to utilize the concept of investment portfolio to select and adopt suitable risk measure method to evaluate risk and further control risk. Based on this reason, this study combines the concept of VaR with the theory of portfolio.

    This thesis utilize Markowitz’s Mean-Variance approach and Growth Value Index(GVI) to select each optimal stock portfolio from Taiwan’s Financial Stock、Taiwan’s traditional Stock、Taiwan’s Electronic Stock and publicly traded company in Taiwan Stock Exchange. Furthermore, employing Historical Simulation Approach、Variance-Covariance Approach and GARCH to evaluate the VaR of that optimal portfolio. Finally, through Kupiec test (1995) to evaluate each model’s forecasting performance.

    Empirical study shows that from the results of the out-of-sample forecasting, we can find that GARCH is the best one to forecast the VaR, and decompose the portfolio VaR with marginal VaR and component VaR .This kind of analysis can provide managers with more accurate decision in making risk management.
    Reference: 中文部分

    柏婉貞, 黃柏農;2007,“台股指數期貨與現貨市場日內報酬波動與交易量非線性行為之研究“


    廖偉真, 雷立芬;2010,“不同樣本頻率之股市波動性估計 ─GARCH、TGARCH 與 EGARCH 之比較”臺灣銀行季刊, 第六十一卷第四期。

    文,國防大學國防管理學院國防財務資源管理研究所, 台北縣。


    賴瀅纕;2005,“Fama-French 三因子模型於台灣股市之實證研究“長庚大學。
    Alexander, Carol O, & Leigh, Catherlin T. (1997). On the Covariance Matrices Used
    in Value at Risk Models. The Journal of Derivatives, 4(3), 50-62.

    Banz, Rolf W. (1981). The Relationship between Return and Market Value of
    Common Stocks. Journal of financial economics, 9(1), 3-18.

    Beder, Tanya Styblo. (1995). Var: Seductive but Dangerous. Financial Analysts
    Journal, 51(5), 12-24.

    Billio, Monica, & Pelizzon, Loriana. (2000). Value-at-Risk: A Multivariate Switching
    Regime Approach. Journal of Empirical Finance, 7(5), 531-554.

    Bollerslev, Tim. (1986). Generalized Autoregressive Conditional Heteroskedasticity.
    Journal of econometrics, 31(3), 307-327.

    Bondt, Werner FM, & Thaler, Richard. (1985). Does the Stock Market Overreact?
    The Journal of finance, 40(3), 793-805.

    Christie, Andrew A. (1982). The Stochastic Behavior of Common Stock Variances:
    Value, Leverage and Interest Rate Effects. Journal of financial economics, 10(4),

    Engel, James, Gizycki, Marianne, & Authority, Australian Prudential Regulation.
    (1999). Value at Risk: On the Stability and Forecasting of the Variance-Covariance
    Matrix: Economic Research Department, Reserve Bank of Australia.

    Engle, Robert F. (1982). Autoregressive Conditional Heteroscedasticity with
    Estimates of the Variance of United Kingdom Inflation. Econometrica: Journal of the
    Econometric Society, 987-1007.

    Fama, Eugene F, & French, Kenneth R. (1992). The Cross‐Section of Expected Stock
    Returns. The Journal of finance, 47(2), 427-465.

    Fama, Eugene F, & French, Kenneth R. (1993). Common Risk Factors in the Returns
    on Stocks and Bonds. Journal of financial economics, 33(1), 3-56.

    Fama, Eugene F, & French, Kenneth R. (1995). Size and Book‐to‐Market Factors in
    Earnings and Returns. The Journal of finance, 50(1), 131-155.

    Fama, Eugene F, & French, Kenneth R. (1998). Value Versus Growth: The
    International Evidence. The Journal of finance, 53(6), 1975-1999.

    French, Kenneth R, Schwert, G William, & Stambaugh, Robert F. (1987). Expected
    Stock Returns and Volatility. Journal of financial economics, 19(1), 3-29.

    Hallerbach, Winfried G, & Spronk, Jaap. (2002). The Relevance of Mcdm for
    Financial Decisions. Journal of Multi‐Criteria Decision Analysis, 11(4‐5), 187-195.

    Harris, Richard DF, & Guermat, Cherif. (2000). Robust Conditional Variance
    Estimation and Value-at-Risk. Available at SSRN 254569.

    Holthausen, Robert W, & Larcker, David F. (1992). The Prediction of Stock Returns
    Using Financial Statement Information. Journal of Accounting and Economics, 15(2),

    Hong, Harrison, Lim, Terence, & Stein, Jeremy C. (2000). Bad News Travels Slowly:
    Size, Analyst Coverage, and the Profitability of Momentum Strategies. The
    Journal of finance, 55(1), 265-295.

    Jegadeesh, Narasimhan, & Titman, Sheridan. (1993). Returns to Buying Winners and
    Selling Losers: Implications for Stock Market Efficiency. The Journal of finance,
    48(1), 65-91.

    Jorion, Philippe. (1997). Value at Risk: McGraw-Hill, New York.

    Jorion, Philippe. (2000). Value-at-Risk: The New Benchmark for Controlling
    Financial Risk. Chicago: McGraw-Hlill.

    Jorion, Philippe. (2007). Financial Risk Manager Handbook (Vol. 406): John Wiley
    & Sons.

    Kupiec, Paul H. (1995). Techniques for Verifying the Accuracy of Risk Measurement
    Models. The J. of Derivatives, 3(2).

    Markowitz, Harry. (1952). Portfolio Selection. The Journal of finance, 7(1), 77-91.

    Piotroski, Joseph D. (2000). Value Investing: The Use of Historical Financial
    Statement Information to Separate Winners from Losers. Journal of Accounting
    Research, 1-41.

    Rosenberg, Barr, Reid, Kenneth, & Lanstein, Ronald. (1985). Persuasive Evidence of
    Market Inefficiency. The Journal of Portfolio Management, 11(3), 9-16.

    van den Goorbergh, Rob WJ, Vlaar, Peter JG, & Bank, Nederlandsche. (1999). Value-
    at-Risk Analysis of Stock Returns Historical Simulation, Variance Techniques or Tail
    Index Estimation? (Vol. 40): De Nederlandsche Bank NV.

    Yeh, I, & Hsu, Tzu-Kuang. (2011). Growth Value Two-Factor Model. Journal of
    Asset Management, 11(6), 435-451.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1033540291
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    029101.pdf2102KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback