English  |  正體中文  |  简体中文  |  Post-Print筆數 : 20 |  Items with full text/Total items : 90058/119991 (75%)
Visitors : 24085951      Online Users : 1862
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/99421


    Title: 非晶形價鍵固態中的隨機單態:強無序重整化群法之研究
    Random singlets in an amorphous valence-bond solid: a strong-disorder renormalization group study
    Authors: 柯志緯
    Ke, Chih Wei
    Contributors: 林瑜琤
    Lin, Yu Cheng
    柯志緯
    Ke, Chih Wei
    Keywords: 非晶形價鍵固態
    旋子
    強無序重整化群法
    價鍵態
    amorphous valence-bond solid
    spinon
    strong-disorder renormalization group
    valence-bond states
    Date: 2016
    Issue Date: 2016-07-21 10:03:34 (UTC+8)
    Abstract: 處於絕對零溫時,自旋 1/2 海森堡反鐵磁鍊加上額外的多自旋耦合(稱為 J-Q 鍊)可自發性地失去晶格對稱性而形成價鍵固態,此形成條件為強且均質的多自旋Q 耦合。價鍵固態性質與標準海森堡反鐵磁鍊(又稱 J 鏈)之基態性質截然不同,後者屬臨界態且具晶格對稱性。根據強無序重整化群法分析結果,具非均質無序耦合的海森堡反鐵磁鏈基態為一所謂的「隨機單態」,可視為一組具任意長度的價鍵(雙自旋單態)之組合,此價鍵結構造成無序自旋鏈獨特的低溫性質,包含非尋常的能量-長度關係,以及平均自旋關聯函數之冪次下降行為。藉價鍵態的概念,我們於本論文推導適用於無序 J-Q 鍊的強無序重整化群法則。針對零 J 極限的計算結果顯示:完美價鍵固態在非均質耦合環境下將破裂成無序交錯的二聚化區域,兩相鄰區域間的域壁為一帶自旋 1/2 的旋子,且跨越二 聚化區域的旋子兩兩以微弱價鍵連結。此種「非晶形價鍵固態」於長距離範疇亦雷同無序海森堡反鐵磁鏈之基態屬隨機單態,也就是說,原呈現於均質系統的價 鍵固態相變不存在於無序 J-Q 鍊。此外,我們發現平均四自旋關聯函數在隨機單態中亦呈現冪次下降的形式。
    The ground state of the antiferromagnetic spin-1/2 Heisenberg chain with additional multi-spin couplings (the so-called J-Q chain) in the absence of disorder and in the limit of strong multi-spin (Q) couplings is a valence-bond solid (VBS) with spontaneous dimerization; this VBS ground state is different from the critical ground state of the standard Heisenberg chain with nearest-neighbor antiferromagnetic (J) couplings. In the presence of bond randomness, the ground state of the standard Heisenberg chain solved by a strong-disorder renormalization group (SDRG) method was suggested to be in the random-singlet phase consisting of a set of singlets (valence bonds) in a random fashion. This valence-bond (VB) structure leads to unique low-energy properties of the disordered chain, including unconventional energy-length scaling and a power-law decay of the mean spin correlation function. In this thesis we introduce an SDRG scheme using the concepts of the valence-bond basis to study the J-Q chain with random couplings. Our results show that the VBS state breaks into alternating dimerized domains with random singlets formed between spinons localized at domain walls. This amorphous valence-bond solid at long distances is also asymptotically a random-singlet state. Thus, in the random J-Q chain, we do not expect any dimerization phase transition as in the clean system. In addition, we find that the mean dimer correlation function decays algebraically in the random-singlet phase.
    Reference: [1] D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
    [2] D. S. Fisher, Phys. Rev. B. 50, 3799 (1994).
    [3] L. Pauling, The Journal of Chemical Physics 1, 280 (1933).
    [4] P. W. Anderson, Mat. Res. Bull. 8 (1973).
    [5] P. Fazekas and P. W. Anderson, Philos. Mag. 30, 423 (1974).
    [6] P. W. Anderson, Science 235 (1987).
    [7] F. Alet, S. Capponi, N. Laflorencie, and M. Mambrini, Phys. Rev. Lett. 99, 117204 (2007).
    [8] Y.-C. Lin and A. W. Sandvik, Phys. Rev. B 82, 224414 (2010).
    [9] K. S. D. Beach and A. W. Sandvik, Nucl. Phys. B. 750, 142 (2006).
    [10] E. Merzbacher, Quantum Mechanics, Wiley, 1998.
    [11] Wikimedia commons, https://commons.wikimedia.org/wiki/File: Spin_branching_diagram.png.
    [12] T. Oguchi and H. Kitatani, Journal of the Physical Society of Japan 58, 1403 (1989).
    [13] A. W. Sandvik, AIP Conf. Proc. 1297, 135 (2010).
    [14] S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988).
    [15] J. Lou and A. W. Sandvik, Phys. Rev. B 76, 104432 (2007).
    [16] E. Manousakis, Rev. Mod. Phys. 63 (1991).
    [17] K. S. D. Beach, Phys. Rev. B 79, 224431 (2009).
    [18] C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).
    [19] B.Bernu, P.Lecheminant, C.Lhuillier, and L. Pierre, Phys. Rev. B 50, 10048 (1994).
    [20] S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007).
    [21] T.-H. Han et al., Nature 492, 406 (2012).
    [22] Y.-C. Lin, Y. Tang, J. Lou, and A. W. Sandvik, Phys. Rev. B 86, 144405 (2012).
    [23] B. Sutherland, Phys. Rev. B 37, 3786 (1988).
    [24] S. Liang, Phys. Rev. B 42, 6555 (1990).
    [25] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).
    [26] A. W. Sandvik and H. G. Evertz, Phys. Rev. B 82, 024407 (2010).
    [27] R. R. P. Singh, M. E. Fisher, and R. Shankar, Phys. Rev. B 39, 2562 (1989).
    [28] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, Journal of Physics A: Mathematical and General 22, 511 (1989).
    [29] T. Giamarchi and H. J. Schulz, Phys. Rev. B. 39, 4620 (1989).
    [30] Y. Tang and A. W. Sandvik, Phys. Rev. Lett. 107, 157201 (2011).
    [31] S. Sanyal, A. Banerjee, and K. Damle, Phys. Rev. B 84, 235129 (2011).
    [32] A. W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007).
    [33] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Science 303, 1490 (2004).
    [34] C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305 (1980).
    [35] S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43, 1434 (1979).
    [36] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
    [37] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
    [38] J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. E 69, 066140 (2004).
    [39] G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602 (2004).
    [40] F. Iglói and C. Monthusc, Phys. Rep 412, 277 (2005).
    [41] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982).
    [42] D. S. Fisher, Physica A: Statistical Mechanics and its Applications 263, 222 (1999).
    [43] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Phys. Rev. B 61, 1160 (2000).
    [44] Y.-C. Lin, R. Mélin, H. Rieger, and F. Iglói, Phys. Rev. B 68, 024424 (2003).
    [45] Y.-C. Lin, H. Rieger, N. Laflorencie, and F. Iglói, Phys. Rev. B 74, 024427 (2006).
    [46] R. Mélin, Y.-C. Lin, P. Lajkó, H. Rieger, and F. Iglói, Phys. Rev. B 65, 104415 (2002).
    [47] Y. Tang, A. W. Sandvik, and C. L. Henley, Phys. Rev. B. 84, 174427 (2011).
    [48] Y.-R. Shu, D.-X. Yao, C.-W. Ke, Y.-C. Lin, and A. W. Sandvik, arXiv 1603.04362v1 (2016).
    [49] A. Lavarélo and G. Roux, Phys. Rev. Lett. 110, 087204 (2013).
    [50] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Phys. Rev. B. 55, 12578 (1997).
    [51] A. Banerjee and K. Damle, J. Stat. Mech Theor. Exp. (2010).
    [52] A. W. Sandvik and D. K. Campbell, Phys. Rev. Lett. 83, 195 (1999).
    [53] G. S. Uhrig and H. J. Schulz, Phys. Rev. B. 54, R9624 (1996).
    [54] H. Suwa and S. Todo, Phys. Rev. Lett. 115, 080601 (2015).
    [55] G. S. Uhrig, Phys. Rev. B 57, R14004 (1998).
    [56] M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).
    [57] J. Zhang et al., Phys. Rev. B. 90, 014415 (2014).
    [58] T. Shiroka et al., Phys. Rev. Lett. 106, 137202 (2011).
    [59] T. Shiroka et al., Phys. Rev. B 88, 054422 (2013).
    Description: 碩士
    國立政治大學
    應用物理研究所
    102755008
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102755008
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500801.pdf1309KbAdobe PDF436View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback