English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88866/118573 (75%)
Visitors : 23567476      Online Users : 221
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/99531
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/99531


    Title: 雙次抽樣平均數和變異數管制圖設計之研究
    Study on design of double sampling mean and variance control charts
    Authors: 吳信宏
    Wu, Sin Hong
    Contributors: 楊素芬
    Yang, Su Fen
    吳信宏
    Wu, Sin Hong
    Keywords: 二次抽樣
    平均串連長度
    二項分配
    Double sampling
    Average run length
    Binomial distribution
    Date: 2016
    Issue Date: 2016-08-02 15:53:29 (UTC+8)
    Abstract: 雙次抽樣平均數和變異數管制圖設計之研究
    Control charts are effective tools for detecting manufacturing processes and service processes. Nowadays, much of the data in manufacturing or service industries comes from processes having non-normal or unknown distributions. The commonly used Shewhart control charts, which depend heavily on the normality assumption, are not appropriately used for this situation. In this paper, we propose a standardized dynamic double sampling asymmetric EWMA mean control chart (SDDS EWMA-AM chart), a standardized dynamic double sampling asymmetric EWMA variance control chart (SDDS EWMA-AV chart), and their combined charts (joint SDDS EWMA-AM and SDDS EWMA-AV charts) to monitor process mean, variance and both shifts, respectively. The charts based on the double sampling procedure and two simple distribution-free transformed statistics are used for non-normal distribution of a quality variable. The performance of the proposed charts and that of some existing distribution-free mean and variance charts are compared. Further, a non-normal service times example from the service system of a bank branch is used to illustrate the applications of the proposed charts and to compare detection performance with the existing distribution-free mean and variance control charts. The charts we proposed show superior detection performance compared to the existing distribution-free mean and variance charts. Thus they are recommended.
    Reference: Carot, V., Jabaloyes, J. and Carot, T. (2002). "Combined double sampling and variable sampling interval X-bar chart." International Journal of Production Research 40(9): 2175-2186.
    Chowdhury, S., Mukherjee, A. and Chakraborti, S. (2014). "A New Distribution‐free Control Chart for Joint Monitoring of Unknown Location and Scale Parameters of Continuous Distributions." Quality and Reliability Engineering International 30(2): 191-204.
    Daudin, J.J. (1992). "Double sampling X-bar charts." Quality control and applied statistics 37(11): 583-586.
    Deng, Q. (2009). "Combined charts for mean and variance information." Journal of Quality Technology 41(4): 415-425.
    Ghute, V. (2014). "Nonparametric Control Charts for Variability Using Runs Rules." The Experiment 24(4): 1683.
    He, D. and Grigoryan, A. (2006). "Joint statistical design of double sampling X-bar and S charts." European Journal of Operational Research 168(1): 122-142.
    Khoo, M. B. and Lim, E. (2005). "An improved R (range) control chart for monitoring the process variance." Quality and Reliability Engineering International 21(1): 43-50.
    Lee, P.H., Chang, Y.C. and Torng, C.C. (2012). "A design of S control charts with a combined double sampling and variable sampling interval scheme." Communications in Statistics-Theory and Methods 41(1): 153-165.
    Mukherjee, A. and Chakraborti, S. (2012). "A Distribution‐free Control Chart for the Joint Monitoring of Location and Scale." Quality and Reliability Engineering International 28(3): 335-352.
    Torng, C.C. and Lee, P.H. (2009). "The Performance of Double Sampling X-bar Control Charts Under Non Normality." Communications in Statistics: Simulation and Computation 38(3): 541-557.
    Yang, S.F. and Arnold, B. C. (2014). "A simple approach for monitoring business service time variation." The Scientific World Journal 2014. online publishing.
    Yang, S.F. and Arnold, B. C. (2015). "A new approach for monitoring process variance." Journal of Statistical Computation and Simulation: 1-17. online publishing.
    Zhang, C., Xie, M., Liu, J. and Goh, T. (2007). "A control chart for the Gamma distribution as a model of time between events." International Journal of Production Research 45(23): 5649-5666.
    Zhang, G. (2014). "Improved R and S control charts for monitoring the process variance." Journal of Applied Statistics 41(6): 1260-1273.
    Zhang, J., Zou, C. and Wang, Z. (2010). "A control chart based on likelihood ratio test for monitoring process mean and variability." Quality and Reliability Engineering International 26(1): 63-73.
    Zou, C. and Tsung, F. (2010). "Likelihood ratio-based distribution-free EWMA control charts." Journal of Quality Technology 42(2): 174.
    Description: 碩士
    國立政治大學
    統計學系
    103354016
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103354016
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401601.pdf4559KbAdobe PDF30View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback