
‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

國立政治大學資訊科學系國立政治大學資訊科學系國立政治大學資訊科學系國立政治大學資訊科學系    

Department of Computer Science 
National Chengchi University 

 

 

碩士論文 

Master’s Thesis 
 

 

 

 

 

針對複合式競賽挑選最佳球員組合的方法 

Selecting the Best Group of Players for a Composite Competition 

 

 

 

 

 

研 究 生：鄧雅文 

指導教授：陳良弼 

 

 

 

 

中華民國九十九年七月 

July 2010 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

針對複合式競賽挑選最佳球員組合的方法 

Selecting the Best Group of Players for a Composite Competition 

 

  研 究 生：鄧雅文   Student：Ya-Wen Teng 

  指導教授：陳良弼   Advisor：Arbee L. P. Chen 

 

 

國立政治大學 

資訊科學系 

碩士論文 
 

 

 

A Thesis 

submitted to Department of Computer Science 

National Chengchi University 

in partial fulfillment of the Requirements 

for the degree of 

Master 

in 

Computer Science 
 

 

 

中華民國九十九年七月 

July 2010 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

記錄編號：G0097753034

國立政治大學國立政治大學國立政治大學國立政治大學

博碩士論文全文上網授權書博碩士論文全文上網授權書博碩士論文全文上網授權書博碩士論文全文上網授權書

National ChengChi University

Letter of Authorization for Theses and Dissertations Full Text Upload

(提供授權人裝訂於紙本論文書名頁之次頁用)

(Bind with paper copy thesis/dissertation following the title page)

 

本授權書所授權之論文為授權人在國立政治大學資訊科學學系系所 ________________組
98學年度第二學期取得 碩士學位之論文。
This form attests that the _____________ Division of the Department of Graduate 
Institute of Computer Science at National ChengChi University has received a Master 
degree thesis/dissertation by the undersigned in the _________ semester of 98 
academic year.
 

論文題目論文題目論文題目論文題目（（（（Title））））：針對複合式競賽挑選最佳球員組合的方法 ( Selecting the Best Group
of Players for a Composite Competition )

指導教授指導教授指導教授指導教授（（（（Supervisor））））：陳良弼

立書人同意非專屬、無償授權國立政治大學，將上列論文全文資料以數位化等各種方式重

製後收錄於資料庫，透過單機、網際網路、無線網路或其他公開傳輸方式提供用戶進行線

上檢索、瀏覽、下載、傳輸及列印。國立政治大學並得以再授權第三人進行上述之行為。 
The undersigned grants non-exclusive and gratis authorization to National ChengChi
University, to re-produce the above thesis/dissertation full text material via digitalization 
or any other way, and to store it in the database for users to access online search, 
browse, download, transmit and print via single-machine, the Internet, wireless Internet 
or other public methods. National ChengChi University is entitled to reauthorize a third
party to perform the above actions.
論文全文上載網路公開之時間（Time of Thesis/Dissertation Full Text Uploading for Internet Access）：

網際網路（The Internet） ■ 中華民國 100 年 8 月 5 日公開
● 立書人擔保本著作為立書人所創作之著作，有權依本授權書內容進行各項授權，且未侵
害任何第三人之智慧財產權。

The undersigned guarantees that this work is the original work of the undersigned, and
is therefore eligible to grant various authorizations according to this letter of 
authorization, and does not infringe any intellectual property right of any third party.
● 依據96年9月22日96學年度第1學期第1次教務會議決議，畢業論文既經考試委員評定完
成，並已繳交至圖書館，應視為本校之檔案，不得再行抽換。關於授權事項亦採一經授權

不得變更之原則辦理。

According to the resolution of the first Academic Affairs Meeting of the first semester on
September 22nd, 2007,Once the thesis/dissertation is passed after the officiating
examiner's evaluation and sent to the library, it will be considered as the library's record,
thereby changing and replacing of the record is disallowed. For the matter of
authorization, once the authorization is granted to the library, any further alteration is
disallowed，
立 書 人：鄧雅文

簽 　 名(Signature)：

中 華 民 國       年      月      日
Date of signature：__________/__________/__________ (dd/mm/yyyy)　



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

i 

 

針對複合式競賽挑選最佳球員組合針對複合式競賽挑選最佳球員組合針對複合式競賽挑選最佳球員組合針對複合式競賽挑選最佳球員組合的方法的方法的方法的方法    

摘要 

在資料庫的處理中，top-k查詢幫助使用者從龐大的資料中萃取出具有價值

的物件，它將資料庫中的物件依照給分公式給分後，選擇出分數最高的前 k

個回傳給使用者。然而在多數的情況下，一個物件也許不只有一個分數，

要如何在多個分數中仍然選擇出整體最高分的前 k個物件，便成為一個新

的問題。在本研究中，我們將這樣的物件用不確定資料來表示，而每個物

件的不確定性則是其帶有機率的分數以表示此分數出現的可能性，並提出

一個新的問題：Best-kGROUP查詢。在此我們將情況模擬為一個複合式競

賽，其中有多個子項目，每個項目的參賽人數各異，且最多需要 k個人參

賽；我們希望能針對此複合式競賽挑選出最佳的 k個球員組合。當我們定

義一個較佳的組合為其在較多項目居首位的機率比另一組合高，而最佳的

組合則是沒有比它更佳的組合。為了加快挑選的速度，我們利用動態規劃

的方式與篩選的演算法，將不可能的組合先剔除；所剩的組合則是具有天

際線特質的組合，在這些天際線組合中，我們可以輕易的找出最佳的組合。

此外，在實驗中，對於在所有球員中挑選最佳的組合，Best-kGROUP查詢

也有非常優異的表現。 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

ii 

 

Selecting the Best Group of Players for a Composite Competition 

Abstract 

In a large database, top-k query is an important mechanism to retrieve the most 

valuable information for the users.  It ranks data objects with a ranking 

function and reports the k objects with the highest scores.  However, when an 

object has multiple scores, how to rank objects without information loss 

becomes challenging.  In this paper, we model the object with multiple scores 

as an uncertain data object and the uncertainty of the object as a distribution of 

the scores, and consider a novel problem named Best-kGROUP query.  Imagine 

the following scenario.  Assume there is a composite competition consisting of 

several games each of which requires a distinct number of players.  Suppose 

the largest number is k, and we want to select the best group of k players from 

all the players for the competition.  A group x is considered better than another 

group y if x has higher aggregated probability to be the top ones in more games 

than y.  In order to speed up the selection process, the groups worse than 

another group definitely should first be discarded.  We identify these groups 

using a dynamic programming based approach and a filtering algorithm.  The 

remaining groups with the property that none of them have higher aggregated 

probability to be the top ones for all games against the other groups are called 

skyline groups.  From these skyline groups, we can easily compare them to 

select the best group for the composite competition.  The experiments show 

that our approach outperforms the other approaches in selecting the best group 

to defeat the other groups in the composite competitions. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

iii 

 

誌謝誌謝誌謝誌謝    

 首先，我要先歸榮耀給神，在我的求學過程中，一路都有祂最美好的安排；特別在

碩二的緊張和壓力中，祂不斷地用愛激勵我、帶領我，雖然遇到困難和挫折，但是感謝

神，祂依然將我安置在高處。 

 這篇論文的完成最感謝的人是我的指導教授陳良弼老師，從碩一就開始教導我做研

究的嚴謹態度，一直到碩二開始討論問題，老師特地每週一次的討論時間對我來說非常

珍貴也非常感謝；還有每次的論文修改討論，都帶給我很大的幫助。除此之外，在生活

上不管是受傷或生病都有老師的關心，很謝謝老師在研究所這兩年所有的付出。 

 也很感謝實驗室的學長姊、學弟妹，每次的報告都給我很好的建議，不僅如此，也

陪伴我渡過兩年快樂的研究所生活，和你們相處的時間雖然不長，但是不管在課業或玩

樂上都給我留下十分美好的回憶。 

 謝謝一直陪伴著我的家人：爸爸、媽媽、大姨和姊姊，你們的關心、代禱、鼓勵是

我的支持和力量，每一通電話、每一封簡訊、每一次一起禱告，都給我極大的安慰；還

有我的男朋友家祺，雖然我們常常一起打電動以致於必須熬夜趕報告、一起吃吃喝喝直

到錢包空空如也，但是很高興、也很感謝你的陪伴。教會的牧者、小組長、同組的姊妹，

還有許許多多的朋友，謝謝你們在我研究不順利的時候為我加油打氣，也包容我的低潮，

也願我的喜悅與你們一同分享。 

 最後，我要再一次地謝謝所有師長、家人、朋友，過去的日子有你們的陪伴是神的

恩典，願上帝也大大祝福你們！ 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

iv 

 

TABLE OF CONTENTS 

1 INTRODUCTION .............................................................................................................. 1 

2 RELATED WORK ............................................................................................................. 7 

2.1 Top-k Queries ..................................................................................................... 7 

2.2 Uncertain Data .................................................................................................... 8 

2.2.1 Uncertain Top-k Queries ..................................................................................... 8 

2.2.2 Uncertain Top-k Queries on Data Streams ....................................................... 14 

2.2.3 Uncertain Nearest Neighbor Queries ................................................................ 14 

2.3 Skyline .............................................................................................................. 15 

3 METHODOLOGY ........................................................................................................... 17 

3.1 Problem Definition ........................................................................................... 17 

3.2 The Basic Algorithms ....................................................................................... 20 

3.3 The Heuristic Approaches ................................................................................ 28 

4 EXPERIMENTS ............................................................................................................... 29 

4.1 Experiment Setup ............................................................................................. 29 

4.2 On Execution Time ........................................................................................... 32 

4.3 On Accuracy ..................................................................................................... 34 

4.4 On Performance of the Composite Competition .............................................. 35 

5 CONCLUSIONS AND FUTURE WORK ....................................................................... 37 

6 REFERENCES ................................................................................................................. 40 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

v 

 

LIST OF TABLES 

Table 1-1: Pin-fall records of A, B, and C. ................................................................................. 1 

Table 1-2: Bowling scores of A, B, and C. ................................................................................. 2 

Table 1-3: Records of player A, B, and C. .................................................................................. 3 

Table 1-4: Modeled as uncertain data. ........................................................................................ 3 

Table 1-5: The aggregated probability to be the top-1 player. .................................................... 5 

Table 1-6: The aggregated probability to be the top-2 players. .................................................. 5 

Table 2-1: The example database D. ........................................................................................... 9 

Table 2-2: All possible worlds of D. ......................................................................................... 10 

Table 2-3: All possible U-top2 of D. ........................................................................................ 11 

Table 2-4: All possible rank 1 and rank 2 answers. .................................................................. 12 

Table 2-5: The top-k probability of all tuples. .......................................................................... 13 

Table 3-1: The tuple concept of D. ........................................................................................... 19 

Table 3-2: The table with all groups and their aggregated probabilities. ................................. 20 

Table 3-3: Information of selecting the best 2GROUPs of the dataset in D. ........................... 20 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

vi 

 

LIST OF FIGURES 

Figure 3-1: Algorithm GroupGen. ............................................................................................ 22 

Figure 3-2: Illustration of updating the dynamic programming table. ..................................... 23 

Figure 3-3: Algorithm SubsetFilter. ......................................................................................... 26 

Figure 3-4: Algorithm BestGROUP. ........................................................................................ 27 

Figure 4-1: Experiment process. ............................................................................................... 31 

Figure 4-2: Execution time among different algorithms. ......................................................... 33 

Figure 4-3: Accuracy of LimitGroupGen. ................................................................................ 34 

Figure 4-4: Probability of defeating other kSETs among different algorithms. ....................... 35 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

1 

 

1 INTRODUCTION 

There are many approaches to help the users to retrieve important data objects.  Ranking 

objects and reporting the ones with the highest scores is called top-k query.  Traditional top-k 

queries identify top-k objects by a scoring function which gives each object a unique score.  

For example, there are three players and their pin-fall records of a bowling game in Table 1-1.  

The bowling is scored for each pin knocked over.  The players will get bonuses in two cases.  

One is that he/she knocked down all 10 pins with the first ball, called a strike and recorded as 

an X, while the other is that no pins are left after the second ball, called a spare and recorded 

as a slash.  The bonus is that points scored for the next two and next ball after a strike and 

spare are doubled, respectively.  By the rules above, we obtain the scores for each frame, 

shown in Table 1-2, and the scoring function to rank these three players in a bowling game is 

the aggregated scores.  In this example, we can simply claim the player A gets the first place. 

Table 1-1: Pin-fall records of A, B, and C. 

Player 1 2 3 4 5 6 7 8 9 10 10+1 10+2 

A X  X  X  9 / X  X  X  X  X  X  X  X  

B X  X  5 / X  X  X  X  X  X  X  X  X  

C X  X  X  X  X  8 / 7 / X  X  X  X  X  

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

2 

 

Table 1-2: Bowling scores of A, B, and C. 

Player 1 2 3 4 5 6 7 8 9 10 Score 

A 30 29 20 20 30 30 30 30 30 30 279 

B 25 20 20 30 30 30 30 30 30 30 275 

C 30 30 30 28 20 17 20 30 30 30 265 

 In the traditional top-k query, the answer to a top-k query is the extension of that to a 

top-(k-1) query.  In the example of the data in Table 1-2, the top-1 player is A and the top-2 

players are A and B.  When we define a composite competition consisting of various games 

each of which requires distinct number of players and suppose the largest number of players 

in the games is k, we can simply submit a top-k query to the database of players and take the 

answer as the best group of k players for the competition since these k players must contains 

the answers of top-1, top-2, …, and top-(k-1) queries. 

 However, when a player has more competing experiences, he/she will have not only one 

score, shown in Table 1-3.  To rank such data objects with multiple scores, we can simply 

use another scoring function to obtain the average scores or the expected scores, in other 

words.  When we replace the multiple scores with a single score, some information is 

omitted.  For example, a player has the following scores: 100, 1000 and 1000, while another 

player has 50, 50 and 2000.  The expected score is the same, 700, but the range and the 

distribution of the scores are not the same for these two players.  Therefore, this way to 

model the multi-score data is not appropriate.  In this paper, we use an uncertainty model to 

model the data objects with multiple scores.  The uncertainty of each object is the 

probabilistic scores which keep the original score distribution, as shown in Table 1-4 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

3 

 

Table 1-3: Records of player A, B, and C. 

Player Past records 

A 279 252 252 252 266 

B 275 300 275 200 200 

C 265 265 265 265 265 

Table 1-4: Modeled as uncertain data. 

Player 

Probabilistic score 

Score Probability 

A 

279 0.2 

266 0.2 

252 0.6 

B 

300 0.2 

275 0.4 

200 0.4 

C 265 1.0 

 After we model the objects as uncertain data, the top-k objects are defined as the k 

objects with the highest probability to be the top-k ones.  For example, when a top-1 query is 

submitted to the dataset in Table 1-4, the probability to be the top-1 object for each object 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

4 

 

needs to be obtained first and then the object with the highest probability can be decided.  

We compute the probability of A to be the top-1 player in three cases.  One is when A gets 

279 (with probability 0.2) and B and C get scores not greater than A (with probability 

0.4+0.4=0.8 of B and probability 1.0 of C). A has probability 0.2*0.8*1.0=0.16 to be the top-1 

player.  Another is 0.2*0.4*1.0=0.08 and the other is 0.6*0.4*0=0 since C cannot be less 

than A when A gets 252.  Therefore, the total probability of A to be the top-1 player is 

0.16+0.08+0=0.24.  We can obtain the probability for each player in the same way to have 

the top-1 player.  When a top-k query is submitted, we view k objects as a group and 

compute the aggregated probability of these objects to be the top-k objects and select the 

group with the highest aggregated probability as the answer.  Here we also use the data in 

Table 1-4 as an example to explain more clearly.  When a top-2 query is submitted to the 

dataset in Table 1-4, we group these three players into 3 groups as following: {A, B}, {A, C}, 

and {B, C}.  The aggregated probability of each group should be computed as the way in the 

above example.  The aggregated probability of A and B to be the top-2 players is computed 

in nine cases.  When A gets 279 (with probability 0.2), B gets 300 (with probability 0.2) and 

C gets the score not greater than A and B (with probability 1.0), the probability of A and B as 

the top-2 players is 0.2*0.2*1.0=0.04.  We can compute other eight cases as the same way.  

Note that, when A gets 252 or B gets 200, C has no chance to get a score smaller than A and B.  

That is, A and B are not the top-2 players in the cases so that the probability is 0 and it does 

not contribute to the aggregated probability.  Hence, the aggregated probability of A and B to 

be the top-2 players is 0.24.  Again, we compute the aggregated probability for other groups 

to obtain the two players with the highest aggregated probability to be the top-2 ones. 

 However, we have an observation of the top-k queries on uncertain data.  The answer of 

top-k query does not always include the answers of top-i queries, where i is less than k.  We 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

5 

 

take the data in Table 1-4 as an example.  The answer of top-1 query is B but that of top-2 

query is B and C, shown in Table 1-5 and Table 1-6.  That is, when we have a composite 

competition consisting of two games which include one game with 1 player while the other 

with 2 players, the traditional method is not appropriate since the top-2 query reports B and C, 

but none of them is the answer of top-1 query.  In other words, the top-k query on uncertain 

data cannot satisfy the need for a composite competition. 

Table 1-5: The aggregated probability to be the top-1 player. 

Player Aggregated probability 

{B} 0.52 

{C} 0.24 

{A} 0.24 

Table 1-6: The aggregated probability to be the top-2 players. 

Players Aggregated probability 

{A, C}  0.40 

{B, C}  0.36 

{A, B}  0.24 

 Therefore, we propose a novel problem named Best-kGROUP query to retrieve the best 

groups for the composite competition.  Suppose the largest number of players in the games 

of the composite competition is k.  In a game with i players, if a group x of i players has a 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

6 

 

higher aggregated probability to be the top-i players than another group y, we say there is a 

preference of x over y.  A group P is said better than another group Q in a composite 

competition if there are more preferences of the sub-groups in P than in Q.  The best groups 

are those that are not worse than any other groups. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

7 

 

2 RELATED WORK 

In the following, we introduce the background of uncertain data, the top-k processing and 

nearest-neighbor queries.  On the other hand, we also mention the work of skyline and the 

reason why we choose skyline to solve our problem. 

2.1 Top-k Queries 

Top-k queries are useful when users are interested in the most important objects, especially in 

large databases.  In [1], I. F. Ilyas et al. classify the top-k processing techniques.  There are 

five categories as following: query model, data and query certainty, data access, 

implementation level, and ranking function. 

 There are three types of query models.  One is Top-k Selection Query which is to report 

the k tuples with the highest score according to some scoring function.  Another is Top-k 

Join Query which is the variance of Top-k Selection Query.  Its scoring functions are 

attached to join results.  The other is Top-k Aggregate Query which focuses on groups of 

tuples rather than single tuples. 

 In the data and query certainty issue, the authors furthermore classify the techniques into 

three types.  The first two types are related to certain data and queries.  The difference 

between them is that the first type reports the exact answers of queries while the second types 

reports the approximate answers instead.  The last type is related to uncertain data which will 

be more discussed in the following sections. 

 In data access field, sorted access and random access are discussed.  Difference data 

access assumptions affect the methods to retrieve the underlying data sources. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

8 

 

 The way implementing top-k queries can be classified into two types.  One is on 

application level and the other is on query engine level.  The difference between these two 

types is the modification of the core of database engines. 

 The ranking functions in most techniques are assumed to be monotone while a few ones 

are generic form.  However, in recent researches, some are without scoring function.  It is 

called a skyline query and we would discuss it in Section 0. 

2.2 Uncertain Data 

Recently, the research on uncertain data has attracted a lot of interest.  It is because the 

problems related to uncertainty cannot be addressed as traditional approaches.  In [2], C. C. 

Aggarwal et al. survey the sources of uncertainty.  It is from errors, incompleteness, and 

multiple records so that the data objects have probabilistic attributes.  The main research area 

of uncertain data includes three types.  One is data modeling, another is data management, 

and the other is data mining.  Here we focus on the data management, and we use the 

discrete probability distribution to model our uncertain data. 

2.2.1 Uncertain Top-k Queries 

 The traditional top-k processing is to retrieve the k tuples with the highest scores.  In 

uncertain top-k definition, we need to consider the tradeoff between scores and probabilities.  

Here we will introduce two definitions proposed in [3].  Before we explain the definitions, 

we need the some preliminaries.  Due to the uncertainty, an object may have different 

behaviors, and each behavior has its existent probability.  Thus, when every object acts as its 

own behavior, we multiply the probability as p and claim this case is one of the possible 

worlds and the existent probability of it is p.  For instance, Table 2-1 shows the example 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

9 

 

uncertain database.  We can obtain all possible worlds from it, shown in Table 2-2. 

Table 2-1: The example database D. 

Player 

Probabilistic score 

Tuple ID Score Probability 

A 

t1 279 0.2 

t2 266 0.2 

t3 252 0.6 

B 

t4 300 0.2 

t5 275 0.4 

t6 200 0.4 

C t7 265 1.0 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

10 

 

Table 2-2: All possible worlds of D. 

Possible World Members Probability 

PW1 B(t4), A(t1), C(t7) 0.2*0.2*1.0 = 0.04 

PW2 A(t1), B(t5), C(t7) 0.2*0.4*1.0 = 0.08 

PW3 A(t1), C(t7), B(t6) 0.2*0.4*1.0 = 0.08 

PW4 B(t4), A(t2), C(t7) 0.2*0.2*1.0 = 0.04 

PW5 B(t5), A(t2), C(t7) 0.2*0.4*1.0 = 0.08 

PW6 A(t2), C(t7), B(t6) 0.2*0.4*1.0 = 0.08 

PW7 B(t4), C(t7), A(t3) 0.6*0.2*1.0 = 0.12 

PW8 B(t5), C(t7), A(t3) 0.6*0.4*1.0 = 0.24 

PW9 C(t7), A(t3), B(t6) 0.6*0.4*1.0 = 0.24 

 In U-Topk, we sum up all probabilities over all possible worlds for a top-k tuples.  Note 

that, the U-Topk only considers the concept of tuples.  From Table 2-2, we can furthermore 

obtain all possible U-top2 answer in Table 2-3.  Therefore, <t5, t7> and <t7, t3> with the 

highest probability 0.24 to be top-2 over all possible worlds would be the answer of U-Top2.  

M. Soliman et al. transform the U-Topk query into a state search problem.  They start from 

the tuple with the highest score.  Each time they scan a new tuple, they extend the current 

state with the highest probability until the length of the retrieved current state is k.  The 

tuples kept in the state is the answer of U-Topk. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

11 

 

Table 2-3: All possible U-top2 of D. 

Top-2 vector Probability 

<t5, t7> 0.24 

<t7, t3> 0.24 

<t4, t7> 0.12 

<t1, t5> 0.08 

<t1, t7> 0.08 

<t5, t2> 0.08 

<t2, t7> 0.08 

<t4, t1> 0.04 

<t4, t2> 0.04 

 M. Soliman et al. also define U-kRanks which is totally different from U-Topk.  

U-kRanks retrieves the top-k tuples separately.  That is, we scan the every ranking position 

for the tuple with highest existent probability.  In this example, although the U-2Ranks 

answer, <t5, t7>, is the same as the U-Top2 one, the semantic meaning is very different.  

Since the tuple of each ranking is picked separately, we might choose the same tuple in 

different ranking or tuples from the same object.  That is, the U-kRanks definition does not 

care of the relation between each tuple in the answer and the answer might not be valid in any 

possible world. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

12 

 

Table 2-4: All possible rank 1 and rank 2 answers. 

Rank 1 Probability Rank 2 Probability 

t5 0.32 t7 0.52 

t7 0.24 t3 0.24 

t4 0.20 t2 0.12 

t1 0.16 t5 0.08 

t2 0.08 t1 0.04 

  In addition, M. Hui et al. propose another definition about uncertain top-k queries in [4], 

and it is called PT-k.  For each tuple, they first define a top-k probability which is the 

possibility of the tuple as a member of the top-k ones over all possible worlds.  When we 

compute the top-k probabilities, the straightforward approach suffers from the exclusive rules.  

M. Hui et al. use the compressed dominant set of each tuple to simplify the steps.  In a 

compressed dominant set of a tuple t, all tuples are independent of t.  As we know, all the 

probabilities can be simply multiplied when all tuples are independent.  Hence, the 

computing process can be efficiently simplified.  The answer of PT-k is all the tuples with 

top-k probability higher than an input threshold p.  In the example of Table 2-1, when p=0.5, 

the answer of PT-2 is only one tuple {t7}.  From the definition, the answer of PT-k is simply 

a set of tuples with top-k probability higher than p.  The relation of each tuple is not 

considered when PT-k reports the answer. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

13 

 

Table 2-5: The top-k probability of all tuples. 

Tuple ID Top-k probability 

t1 0.20 

t2 0.20 

t3 0.24 

t4 0.20 

t5 0.40 

t6 0.00 

t7 0.76 

 The uncertain top-k queries above focus on the most probable tuples to be the top-k.  

However, the answers might not have the highest score.  In [5], T. Ge et al. observed the 

answers of uncertain top-k queries might be atypical.  It means the answer might have 

relative low score.  For example, the average score of the answer tuples might not be higher 

than the expected score.  Or combinations with aggregated scores of tuples higher than the 

answer are many and their total probability is much higher than the answer is.  In these 

situations, the uncertain top-k answers are perhaps not appropriate in score concept.  

Therefore, T. Ge et al. propose c-Typical-Topk to retrieve c combinations to represent the 

whole score distribution the dataset.  It first uses a dynamic programming based approach to 

generate the whole distribution.  Then, it maps the process of retrieving c combinations from 

all combinations of score distribution to the p-median problem and resolves by two recursion 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

14 

 

functions. 

2.2.2 Uncertain Top-k Queries on Data Streams  

Data streaming has been focused for a long time because it models the way data collected 

from the real-world applications.  In a streaming problem, the challenge is the rapid growth 

of the amount of data.  Both the execution time and storing space makes the approaches 

designed for the static databases useless.  We can classify the streaming models into two 

types.  One is unbounded streaming and the other is bounded streaming.  The former 

collects data from the beginning while the latter would remove the expired data.  This is 

more challenging when we need to not only append new coming data but also remove old 

ones.  We call this a sliding-window model since the valid data only appear in the window 

and the window would slides on the stream. 

 In [6], C. Jin et al. propose a framework to process difference types of top-k queries on 

uncertain data streams.  They claim the previous definitions, such as U-Topk, U-kRanks, 

PT-k, and so on, can be plugged into this framework.  In their framework, they first define a 

compact set which keeps the minimal tuples to retrieve the uncertain top-k answers even if 

new tuples are appended.  However, the problem is defined on sliding-window model, so we 

use multiple compact sets at different time-stamps to implement the removing operation.  

The authors furthermore propose other compression approaches to reduce the space the large 

amount of compact sets would need. 

2.2.3 Uncertain Nearest Neighbor Queries 

 In addition to the uncertain top-k queries, there are uncertain NN queries to retrieve the 

most important objects.  The NN (nearest neighbor) queries report the closest object to the 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

15 

 

query object.  However, in the uncertain database, every object has its probability to be the 

NN and we define this probability as PNN.  G. Beskales et al. propose Topk-PNN to report 

the k objects with the highest probability to be the NN in [7].  They consider both I/O and 

computing time to design an efficient algorithm for retrieving the k objects.  Instead of 

computing the exact PNN of all objects, they use a lazy bound to simplified the computation 

and reduce the cost.  Here we can transform the NN queries into top-k queries.  We let the 

scoring function be the distance of the object and the query, and the score is the lower the 

better.  Now we can find out the PNN of an object is the same as the probability of a player 

to be the top-1 team in 1-game.  We will take Topk-PNN for comparison in our experiments. 

2.3 Skyline 

The skyline query is also a useful approach to retrieve important data.  Before we introduce 

the definition of skyline, we have to explain what the term “dominate” is.  Suppose the value 

is the smaller the better.  A point A is said to dominate another point B if and only if for 

every dimension, the value of A is less than or equal to that of B, and at least in one dimension 

the value of A is less than that of B.  For example, A is <5, 6, 7, 8> and B is <8, 6, 7, 8>.  

Then, we can easily tell that A dominates B.  Moreover, if there is a point cannot be 

dominated by any other points in the database, we call the point as a skyline point. 

 However, as the number of dimensions increases, a point becomes more difficult to be 

dominated.  That is, the number of skyline points becomes huge.  Therefore, M. L. Yiu et al. 

combine the advantages of skyline and top-k queries to define a new query named top-k 

dominating query in [8].  It computes the number of points dominated by each point as the 

ranking score, and then returns the points with the highest scores.  Users do not need to 

worry about how to define a scoring function and can simply give a value k as parameter to 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

16 

 

restrict the size of the answers. 

 Another work on high dimension skyline operation is proposed by C.-Y. Chan et al. in 

[9].  They define k-dominate to describe a point A has the dominance property of another 

point B in a subspace of original space.  According to the k-dominance, they also define 

k-dominant skyline consisting of points which cannot be k-dominated.  Note that, the 

problem does not only reduce the dimension into some subspace since the dominance 

relationship between any two points is not specified in a fixed subspace.  We have the 

property that if a point A (k+1)-dominates another point B, A must k-dominates B.  It implies 

that every k-dominant skyline point must be one of the members of (k+1)-dominant skyline.  

Hence, we know the size of the answers of k-dominant skyline must be less than that of 

original skyline. 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

17 

 

3 METHODOLOGY 

In this section, we will first define our problem and then show the basic algorithms to address 

it.  In the basic algorithms, the aggregated probability for all groups should be computed so 

that we use a dynamic programming based approach to achieve the goal.  However, in 

consideration of the time and space complexity, we turn to heuristics to reduce the cost and 

compare the performance in the Experiment Section.  Besides, we also exploit the property 

of skyline to prune those with no chance to be the answer.  The number of the remaining 

ones is much smaller after the pruning process so that we can compare them directly to 

retrieve the best as the answer. 

3.1 Problem Definition 

Before giving the definition of our problem, we first define the terms used in the following. 

Definition 3-1 i-game.  A game with i players in one team. 

Definition 3-2 i-group.  A set of i players. 

Definition 3-3 aggregated probability of an i-group.  The probability is the sum of the 

probabilities of the players in this i-group to be the top-i players.  In other words, we sum up 

the U-Topi probabilities of the tuples related to this i-group. 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

18 

 

 Definition 3-4 kGROUP.  A kGROUP is a set of k groups, which includes one each for 

all sizes of groups.  For example, a 3GROUP should include three groups which are a 

1-group, a 2-group, and a 3-group.  Besides, for an i-group in the kGROUP, it should be the 

sub-group of the k-group in the same kGROUP, and its aggregated probability is the highest 

among all sub-groups with size i of the k-group mentioned above. 

Definition 3-5 HiRank vector of a kGROUP.  It is a vector with k dimensions.  

Assume that we sort all i-groups by aggregated probability and define that the one whose rank 

is higher has higher aggregated probability. The HiRank vector keeps the rank in dimension i 

for each i-group in this kGROUP.  For example, in Table 3-3, the 2GROUP, {{B}, {B, C}}, 

has <1, 2> as the HiRank vector since {B} has the highest aggregated probability so that {B} 

is ranked first in 1-game and {B, C} has the second highest aggregated probability so that it is 

ranked second in 2-game. 

 Definition 3-6 better kGROUP.  For an i-game, if an i-group x has a higher aggregated 

probability than another i-group y, we define there is a preference of x over y.  Hence, a 

kGROUP P is a better kGROUP than another kGROUP Q if there are more preferences of the 

i-groups in P than in Q. 

 Definition 3-7 best kGROUP.  A kGROUP is the best kGROUP if no other kGROUP is 

better than it. 

 Next, we introduce the concept of skyline to help retrieve all kGROUPs with chance to 

be the best one. 

Definition 3-8 skyline kGROUP.  For a kGROUP, if there are no other kGROUPs 

dominating this kGROUP with respect to the HiRank vector, we call it as a skyline kGROUP.  

A kGROUP P is said to dominate another kGROUP Q if and only if in the HiRank vector VP 

and VQ, VP.i is less than or equal to VQ.i for every dimension i, and VP.j is less than VQ.j in 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

19 

 

some dimension j.  We also use the term non-skyline kGROUP in opposition. 

 Now, we can give the definition of our problem based on the following uncertainty 

model.  For a database D, there are n uncertain players each of which has probabilistic scores, 

shown in Table 2-1.  We can also represent D as the concept of tuples as shown in Table 3-1. 

Table 3-1: The tuple concept of D. 

Tuple ID Related player Score Probability 

t1 A 279 0.2 

t2 A 266 0.2 

t3 A 252 0.6 

t4 B 300 0.2 

t5 B 275 0.4 

t6 B 200 0.4 

t7 C 265 1.0 

Definition 3-9 Best-kGROUP query.  The Best-kGROUP query returns the best 

kGROUPs. 

 Here is an example to illustrate the Best-kGROUP query.  According to the database D 

in Table 2-1, we can obtain a table keeping all groups sorted by their aggregated probabilities, 

shown in Table 3-2.  Suppose we submit a Best-2GROUP query to D.  Then, we need to 

find the HiRank vectors of all 2GROUP.  The information of finding results of the 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

20 

 

Best-2GROUP query is shown in Table 3-3.  Thus, {{A}, {A, C}} and {{B}, {B, C}} are 

both the answers of the Best-2GROUP query. 

Table 3-2: The table with all groups and their aggregated probabilities. 

1-game 2-game 3-game 

{B}  0.52 {A, C}  0.40 {A, B, C}  1.000 

{A}  0.24 {B, C}  0.36   

{C}  0.24 {A, B}  0.24   

Table 3-3: Information of selecting the best 2GROUPs of the dataset in D. 

2GROUP HiRank vector  

{{A}, {A, C}}  <2, 1>  

{{B}, {B, C}}  <1, 2>  

{{A}, {A, B}}  <1, 3> {{B}, {B, C}} is better than it 

3.2 The Basic Algorithms 

In comparison with our basic algorithms, we first introduce a naïve approach to discover the 

results of the Best-kGROUP query. 

 In the naïve approach, we generate all the k-groups, and then, for each k-group, create a 

kGROUP having this k-group and it sub-groups according to Definition 3-4.  After we obtain 

all HiRank vectors of all kGROUPs, we can compare which is better with each other.  Then, 

after those kGROUPs worse than the others are removed, the remaining ones are the best.  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

21 

 

However, this approach suffers from the high cost in computation.  Therefore, we propose 

the basic algorithms to improve it. 

 First, we generate all groups with their aggregated probability based on dynamic 

programming.  Here is our algorithm GroupGen in Figure 3-1.  The input of GroupGen is a 

database in tuple concept ordered by score.  In a dynamic programming based approach, 

tuples should be independent; otherwise, we cannot reuse the previous computation to reduce 

the computing time.  However, tuples in D are often related to other tuples, i.e. they belong 

to the same player.  That is, we cannot compute the correct probabilities from only one scan.  

Instead, we perform an incremental method.  Each time we retrieve a new tuple in D, we 

perform a new scan reversely starting from the new tuple (line 5-8) and stopping at the first 

tuple in D.  However, in each scan, tuples related to this new tuple should be removed and 

others can be unified into ones with respect to its player.  We use MEHash to keep the 

information of all unified probabilities (line 4).  Hence, only unified probabilities except the 

one related to the new tuple needs computing (line 9-12).  Furthermore, in one scan, 

GroupGen would generate only part of aggregated probability for those groups related to the 

tuples scanned so far, so we keep these probabilities in cHash temporarily (line 1 and 13).  

After we retrieve all tuples in D, the aggregated probabilities of the groups in cHash become 

complete.  Then, all groups are distinguished from their size and sorted by aggregated 

probability as the result to return (line 15-16). 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 In Figure 3-2, we illustrate the process of updating the dynamic programming table.  

each scan of a new tuple, we

other objects appeared so far on

that, the order of other objects does not matter since they are all independent.  

22 

Figure 3-1: Algorithm GroupGen. 

, we illustrate the process of updating the dynamic programming table.  

we would put the object related the new tuple onto

other objects appeared so far onto the higher rows in the dynamic programming table

that, the order of other objects does not matter since they are all independent.  

 

, we illustrate the process of updating the dynamic programming table.  In 

onto the last row and 

in the dynamic programming table. Note 

that, the order of other objects does not matter since they are all independent.  We start from 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

the bottom left cell and append a new group {O’} 

generated by only one object, we stop the update of the last row and 

cell X, the groups inside are generated by two ways.  One is from the lower left

this case, all groups in A should 

of each group should be multiplied by the 

lower cell B.  This time we 

multiplied by the non-existence

all cells in the table, the groups in the first row (as the gray region) 

probability in this scan. 

Figure 3-2: Illustration of updating the dynamic programming table

 Since the non-skyline 

3-6 and Definition 3-8, we can ignore them is this step.  

23 

cell and append a new group {O’} to the cell.  Since any 

generated by only one object, we stop the update of the last row and scan

, the groups inside are generated by two ways.  One is from the lower left

should be extended with Oj and appended to X, and the probability 

of each group should be multiplied by the existence probability of Oj.  The other is from the 

we simply append all groups in B to X with their probability 

existence probability of Oj (1 � Pr �O��).  When we finish updating 

all cells in the table, the groups in the first row (as the gray region) are the 

Illustration of updating the dynamic programming table

skyline kGROUPs must be worse than a specific kGROUP by 

, we can ignore them is this step.  We will introduce 

any 2-group cannot be 

scan upwards.  For a 

, the groups inside are generated by two ways.  One is from the lower left cell A.  In 

, and the probability 

.  The other is from the 

in B to X with their probability 

When we finish updating 

the ones with correct 

 

Illustration of updating the dynamic programming table. 

GROUP by Definition 

introduce SubsetFilter to 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

24 

 

retrieve the skyline kGROUPs without computing all HiRank vectors.  However, before we 

discuss the algorithm SubsetFilter, we need to show some properties of the kGROUPs. 

Property 1.  For a kGROUP G and its HiRank vector VG, any other kGROUP 

having an i-group whose rank is higher than VG.i (the value in dimension i of VG) would 

never be dominated by G. 

 Proof:  Assume that a kGROUP A is dominated by G and having some i-group whose 

rank is higher than the i-group in G.  Here we denote the HiRank vector of A as VA.  We 

can obtain two formulas from this assumption.  One is 	∀
, V�. 
 ≥ V�. 
� ∧ 	∃
, V�. 
 >

V�. 
�, and the other is V�. � < V�. � .  However, it is contradiction between these two 

formulas.  Hence, the assumption is false and we know a kGROUP having some i-group 

whose rank is higher than VG.i must not be dominated by G. 

It is easy to verify the correctness of this property.  Recall the definition of dominating.  

We can formulate the equivalence proposition of it.  A vector A is said not to dominate 

another vector B if and only if the value of A is great than that of B in any dimension.  Hence, 

the kGROUPs with the k-group extended from any i-group whose rank is higher than VG.i 

must have an i-group whose rank is higher than G in dimension i.  This is why we claim they 

must not be dominated by G. 

Property 2.  If a kGROUP G has a k-group with the highest aggregated probability 

and there is no other k-group with the same probability as it, this kGROUP G must be a 

skyline kGROUP. 

Proof:  We prove this by the equivalence proposition.  If G is a non-skyline kGROUP, 

there must be a kGROUP A dominating G.  That is, 	∀�, V�. � ≤ V�. �� ∧ 	∃�, V�. � < V�. ��.  

In dimension k, there are two situations.  One is when V�.  < V�. . It turns out that G does 

not have a k-group with the highest aggregated probability.  The other is when V�.  = V�. .  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

25 

 

It makes that there are at least two kGROUPs having the k-group with the same aggregated 

probability.  Since the equivalence proposition is true, Property 2 is proven. 

To use this property, we assume that each time distinguishing a skyline kGROUP, we 

would prune all kGROUPs dominated by it.  That is, the kGROUPs not being removed so far 

must not be dominated by any reported skyline kGROUP.  Moreover, the kGROUP having 

the k-group with the highest aggregated probability must not be dominated by any other 

kGROUP having the k-group whose rank is lower than it.  Since this kGROUP cannot be 

dominated, it must be a skyline kGROUP.  Note that, if there are more than one kGROUPs 

having the k-group with the highest aggregated probability, at least one of them must be a 

skyline kGROUP. 

 In algorithm SubsetFilter, shown in Figure 3-3, we take all groups as input and it outputs 

all skyline kGROUPs.  At first, S is used to keep all the possible answers (line 1).  We start 

from the kGROUP G having the k-group with the highest aggregated probability according to 

Property 2 (line 3-8).  Then, we use Property 1 to filter out those k-groups extends from 

i-groups whose ranks are higher than v.i for some i-game and remove other k-groups since the 

kGROUPs created from them must be non-skyline ones (line 15-19).  After adding G into S 

(line 20), we repeat the whole process until the input set K is empty.  Finally, we can return 

all skyline kGROUPs. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 After we retrieve all skyline 

best one since the size of skyline 

kGROUPs. The algorithm to retrieve the best 

26 

Figure 3-3: Algorithm SubsetFilter. 

After we retrieve all skyline kGROUPs, we can directly compare each other to obtain the 

best one since the size of skyline kGROUPs is much smaller than the size of original 

. The algorithm to retrieve the best kGROUPs is shown in Figure 

 

compare each other to obtain the 

much smaller than the size of original 

Figure 3-4. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 Note that, the best kGROUPs 

be better than other ones.  That is, when we randomly select a 

ones, the probability of the best 

consideration, the number of 

the lower bound of its number of 

being better than another skyline 

than y, x is also better than any dominated by y.  In this pape

as the ones not being worse than any other 

number than the best ones.  And it leads to the largest chance 

kGROUPs. 

27 

Figure 3-4: Algorithm BestGROUP. 

GROUPs from all players are supposed to have the largest chance to 

.  That is, when we randomly select a kGROUP 

, the probability of the best kGROUPs being better than x should be high.  In another 

consideration, the number of kGROUPs dominated by a skyline kGROUP 

the lower bound of its number of kGROUPs being worse than it.  A skyline 

being better than another skyline one y must have larger number than y since when x is better 

than y, x is also better than any dominated by y.  In this paper, the best 

not being worse than any other ones.  That is, no other kGROUPs 

.  And it leads to the largest chance of the answer 

 

from all players are supposed to have the largest chance to 

GROUP x from any other 

should be high.  In another 

GROUP can be viewed as 

being worse than it.  A skyline kGROUP x 

y must have larger number than y since when x is better 

r, the best kGROUPs are defined 

GROUPs have larger 

of the answer to be the best 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

28 

 

3.3 The Heuristic Approaches 

We analyze the time complexity of GroupGen and obtain the time complexity O(��). 

However, in each iteration, the cell of the dynamic programming table contains ���� groups, 

where i is the size of groups.  That is, when we consider the computation in each cell, the 

total complexity becomes O(�� ∙ ��).  It is why we turn to heuristics to reduce the cost. 

 An observation is that the probabilities of many groups are low or even equal to zero.  

We have an attempt to ignore the groups with the probability 0 and it is called 

IgnoreGroupGen.  IgnoreGroupGen makes no difference in the membership of skyline 

kGROUPs.  However, the cost of this attempt might still be high.  Another attempt, 

LimitGroupGen, is to restrict the size of each cell.  LimitGroupGen would lead to an amount 

of inaccuracy but benefit the cost greatly.  It only keeps m(α) groups with the highest 

probability in each cell where the equation m(α) is defined as following. 

m	α� =

���
��min ���� , α ∙ log ���� ,       <

�
2

min �� ������ , α ∙ log � ������� ,    ≥
�
2

� 

Equation 1 

 In Equation 1, we define the equation m(α) with respect to the log of the maximum value 

of ����, where α is a scale parameter and i is from 1 to k.  If k is less than 
�

�
, the maximum 

value will be ����, otherwise � �
��
�
	�.  Note that, when k or n is too small, the log of ���� (or 

� �
��
�
	�) might be less than ���� (or � �

��
�
	�), and we should choose ���� (or � �

��
�
	�) in these cases. 

 More analyses of the heuristic approaches will be shown in Experiment Section. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

29 

 

4 EXPERIMENTS 

In this section, we set up experiments to compare our Best-kGROUP query and other 

uncertain top-k queries proposed in previous work.  Here we consider two algorithms as 

following: U-Topk and Topk-PNN.  Besides, we use the expected value approach as the 

baseline of our experiments since it is the most straightforward one. 

 In our experiments, we generate 20 players and their scores.  Each player has at least 

one score and at most ten scores in the distribution.  Note that, there are no two or more 

players with the same scores. 

 Here we compare the probability of defeating other groups in a composite competition 

and execution time.  In addition, we also examine the accuracy of LimitGroupGen. 

4.1 Experiment Setup 

Before we start the experiments, we should first define the inputs.  The input is the kSET 

which is a set of k groups and includes one each for all sizes of groups.  For an i-group in 

this kSET, it must be the sub-group of the k-group in the same kSET.  From the definition 

above, we know the kSET is the superset of the kGROUP and we can take the answer of the 

Best-kGROUP query as the kSET.  For each algorithm except our Best-kGROUP query, the 

kSET consists of the i-group which is the answer of the query on parameter i for each i.  

However, when the answer is not the sub-group of the k-group in the kSET, we randomly 

choose one of the sub-groups of the k-group since the algorithm does not provide other 

answers.   

 In the competition experiments, we make 20 composite competitions in iteration and in 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

30 

 

each iteration, we randomly generate a kSET to compete with the one of the algorithm to be 

compared.  These 20 composite competitions consist of different number of games.  A 

competition with k players is composed of k distinct games, from 1-game to k-game.  In a 

composite competition with k players, we have to input two kSETs and then obtain the better 

of this competition.  Note that, the better kSET here is defined the same as the better 

kGROUP, so is the best kSET.  We sum up the counts of preference of these two kSETs.  

Here the i-group of each kSET is for the i-game.  The one with more preferences defeats 

another in this competition.  We use the probability of defeating other kSETs over 100 

iterations to compare all algorithms. 

 Here we introduce the way to perform the experiment in each i-game.  Since each 

player has many scores as a discrete distribution, we need to model the distribution rather than 

use the expected value to simplify it.  We use a straightforward approach to model all the 

distribution of all players.  We randomly pick a score from his/her distribution as the 

performance of this player.  Assuming that the randomly-picking approach would fit the 

probability model in large quantities, we perform this step MAX_BOUND times (line 21).  

Then, in each iteration, we sort all players with their randomly-picked scores.  Any i-group 

has exactly the top-i players would obtain one count.  The i-group with more counts after 

MAX_BOUND iterations is the one gaining a preference.  The detail process of the 

experiment is shown in Figure 4-1. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

31 

 

 

Figure 4-1: Experiment process. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

32 

 

4.2 On Execution Time 

In Figure 4-2, we first compare the execution time among these algorithms in two types of 

datasets.  One is uniform distribution and the other is normal distribution.  Here we do not 

perform the algorithm GroupGen because it costs too much space.  But we can know exactly 

that it must take longer time than IgnoreGroupGen does. 

 The average execution time of normal distribution dataset is larger since we have to 

model the normal distribution by almost 10 scores to keep the characteristic of the normal 

distribution while the datasets of uniform distribution is unrestricted. 

 The baseline and Topk-PNN cost a constant time for every k value on datasets of both 

distributions.  However, in the dataset of uniform distribution, the time U-Topk costs raises 

up severely when k increases because U-Topk needs to scan the whole database to find the 

answers.  Also, the time IgnoreGroupGen and LimitGroupGen cost is almost the same 

because the score range of each player overlaps a lot and the probability might be little but 

hardly be 0.  In this case, the drawback of LimitGroupGen sorting all groups in each cell 

becomes more obvious.  On the other hand, in the dataset of normal distribution, the case of 

overlapping is reduced so that U-Topk runs with a constant time, too.  Since the probability 

of a group becomes 0 when the scores of some player not in this group have all appeared, less 

overlapping leads to more groups with probability 0.  Here, IgnoreGroupGen takes almost 

twice the time of LimitGroupGen does. In other words, the number of groups ignored of 

IgnoreGroupGen might be also about twice of that of LimitGroupGen. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

33 

 

 

 

Figure 4-2: Execution time among different algorithms. 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e

cu
ti

o
n

 t
im

e
 (

m
il

li
se

co
n

d
)

The composite competitions with different k

Time cost on uniform distribution datasets

Baseline U-Topk

Topk-PNN Best-kGROUP (Naïve approach)

Best-kGROUP (IgnoreGroupGen) Best-kGROUP (LimitGroupGen)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e

cu
ti

o
n

 t
im

e
 (

m
il

li
se

co
n

d
)

The composite competitions with different k

Time cost on normal distribution datasets

Baseline U-Topk

Topk-PNN Best-kGROUP (Naïve approach)

Best-kGROUP (IgnoreGroupGen) Best-kGROUP (LimitGroupGen)



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

34 

 

4.3 On Accuracy 

Here we compare the accuracy between GroupGen and LimitGroupGen. 

 We can see the accuracy from the Figure 4-3 below.  The F1-measure is computed by 

the value of precision and recall.  We find all best kGROUPs from GroupGen and 

LimitGroupGen, separately.  The precision is the percentage of the kGROUPs matched in 

two approaches over all generated by LimitGroupGen while the recall is over all generated by 

GroupGen. 

 Here the value of α can be 5, 100, 500, and 1000.  The larger the value of α is, the 

higher the accuracy is.  However, the difference is not obvious in Figure 4-3.  It might be 

because of the small size of our datasets.  The values of F1-measure are almost 1 but when k 

is 8, the value is relatively low.  It is because the groups ignored in the cells of a dynamic 

programming table affect the rankings of the related groups so that some kGROUPs have 

wrong HiRank vectors and the algorithm reposts the wrong answer.  Hence, the value of 

F1-measure is only related to the reason and we cannot estimate the trend in F1-measure. 

 

Figure 4-3: Accuracy of LimitGroupGen. 

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v

e
ra

g
e

 F
1

-m
e

a
su

re

The composite competitions with different k

Accuracy of difference α

α = 5 α = 100 α = 500 α = 1000



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

35 

 

4.4 On Performance of the Composite Competition 

In this section, we would compare the performance of the expected value approach (baseline), 

U-Topk, Topk-PNN, and k-group.  We use the experiment process mentioned in Section 4.1. 

 

Figure 4-4: Probability of defeating other kSETs among different algorithms. 

 From Figure 4-4, we can see the probability of defeating other kSETs is lower down 

when the value of k increases in baseline, U-Topk, and Topk-PNN.  The baseline considers 

the multiple scores as an expected value and although the answer in i-game is the i players 

with the highest expected value, the real probability to be the top-i ones is not considered.  In 

Topk-PNN, although the real probability is computed, it does not consider to put k players in 

one group.  Instead, it puts each player in a single group and independently computes the 

probability of each group.  However, U-Topk considers the real probability and put k players 

into one group, but its algorithm is tuple-wise and incoherent.  The term “tuple-wise” means 

that each i-group represents a specific performance of i players and the consideration is not 

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a

b
il

it
y

 o
f 

d
e

fe
a

ti
n

g
 o

th
e

r 
k

S
E

T
s

The composite competitions with different k

Performance on datasets over two distributions

Baseline U-Topk Topk-PNN Best-kGROUP



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

36 

 

comprehensive.  Moreover, when a group is reported as the answer of U-Topk, the players of 

any of its sub-groups may not have high probability to be the top-i players.  When k 

increases and the competition becomes complicated, these three algorithms cannot give a 

good answer for the competition. 

 Therefore, the Best-kGROUP query outperforms other algorithms in selecting the best 

kGROUP for a composite competition.  Also, when the competition becomes more and more 

complicated, the Best-kGROUP query shows the distinction.



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

37 

 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a novel problem to select the best kGROUP in a composite 

competition.  The concept of the composite competition is not considered in previous work 

so that their answers are not suitable for addressing this problem. 

 In addition, we use heuristics to reduce the cost of generating all groups with aggregated 

probability.  By a skyline filter, we can remove kGROUPs with no chance to be the answer.  

The SubsetFilter algorithm furthermore exploits the relationship among dimensions to 

retrieve the skyline without redundant steps.  Also, the experiments show the value of our 

heuristic approaches and the outperformance of our Best-kGROUP query. 

 Our future work will be solving the problem in a more realistic environment.  The 

databases should be updated when players play new games and have new records.  Reusing 

the computing results in the past would reduce the cost but is challenging.  Besides, current 

uncertain model uses a discrete distribution.  If we discuss objects with continuous 

distribution such as moving objects, what the best uncertain model is should be first 

considered.  Moreover, the algorithm to generate all groups with probability is costly, in this 

paper, we use heuristics to reduce the cost and we are looking for other algorithms to improve 

the complexity.  Overall, this paper only describes the first and simple step of our work and 

we believe further research would also be interesting. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

38 

 

6 REFERENCES 

[1] I. F. Ilyas, G. Beskales, and M. A. Soliman. 2008. A Survey of Top-k Query Processing 

Techniques in Relational Database System. ACM Computing Surveys, Vol. 40, No. 4, pp. 

11:1-11:58. 

[2] C. C. Aggarwal and P. S. Yu. 2009. A Survey of Uncertain Data Algorithms and 

Applications. IEEE Transactions on Knowledge and Data Engineering, Vol. 21, No. 5, 

pp. 609-623. 

[3] M. Soliman, I. Ilyas, and K. Chang. 2007. Top-k Query Processing in Uncertain 

Databases. In Proceedings of the 23rd International Conference on Data Engineering 

(ICDE), pp. 896-905. 

[4] M. Hua, J. Pei, W. Zhang, and X. Lin. 2008. Efficiently Answering Probabilistic 

Threshold Top-k Queries on Uncertain Data. In Proceedings of the 24th International 

Conference on Data Engineering (ICDE), pp. 1403-1405. 

[5] T. Ge, S. Zdonik, and S. Madden. 2009. Top-k Queries on Uncertain Data: On Score 

Distribution and Typical Answers. In Proceedings of the 35th International Conference 

on Management of Data (SIGMOD), pp. 375-388. 

[6] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. 2008. Sliding-Window Top-k Queries on 

Uncertain Streams. In Proceedings of the VLDB Endowment, Vol. 1, No. 1, pp. 301-312. 

[7] G. Beskales, M. A. Soliman, and I. F. Ilyas. 2008. Efficient Search for the Top-k 

Probable Nearest Neighbors in Uncertain Databases. In Proceedings of the VLDB 

Endowment, Vol. 1, No. 1, pp. 326-339. 

[8] M. L. Yiu and N. Mamoulis. 2007. Efficient Processing of Top-k Dominating Queries on 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

39 

 

Multi-Dimensional Data. In Proceedings of the 33rd International Conference on Very 

Large Data Bases, pp. 483-494. 

[9] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. 2006. Finding 

k-Dominant Skylines in High Dimensional Space. In Proceedings of the 32nd 

International Conference on Management of Data (SIGMOD), pp. 503-514. 


