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1. The Input/Output Relationship  

In the last thirty years, the research foci of Neural Networks have changed due to properties discovered in 

Neural Networks. In the early days, the focus was to identify an efficient way to determine the acceptable (or 

best) parameter values of a network (cf. Rumelhart and McClelland 1986). Then there came the days to 

investigate the properties of different Neural Network structures, including the number of hidden layers, the 

number of hidden nodes, the form of activation functions, and the connections between different layers of nodes 

(cf. Hertz, Krogh, and Palmer 1991).  Recently, there has been much research on extracting rules from Neural 

Networks (cf. Andrews, Diederich, and Tickle 1995; Tsaih, Hsu, and Lai 1998; Maire 1999; Browne and Sun 

2001; Setiono, Leow, and Zurada 2002; Saito and Nakano 2002; Hanson and Negishi 2002; and Rabuñal, 

Dorado, Pazos, Pereira, and Rivero 2004). With all the progresses in Neural Networks, there remains one 

unsettled question: A systematic, cause-and-effect explanation of the input/output relationship of Neural 

Networks. 

For instance, Huang and Babri (1998) proposed an elegant construction method to set up a real-valued 

single-hidden layer feed-forward neural network (SLFN) with N hidden nodes to successfully learn N distinct 

samples with zero error. However, they left two issues worthwhile to follow up: (i) Does HB_SLFN, the SLFN 

constructed by the method in Huang and Babri (1998), possess any definitive characteristics that differentiate it 

from SLFNs obtained from other algorithms (or construction methods)? (ii) Is it possible to have an alternative 

construction that results in a number of adopted hidden nodes significantly less than N? A thorough exploration 

of the input/output relationship of HB_SLFN may address these two issues. To shed light on the unsettled 

question about the real-valued SLFN, Tsaih and Wan (2007) explored the preimage – the collection of inputs of 

a given output, and showed that the preimage for a specific output value is either a single manifold or multiple 

disjoint manifolds, whose form is either linear or nonlinear. 

In a correlated real-valued SLFN, the weight vectors in the input layer of all its hidden 

nodes are linearly dependent. We can identify that HB_SLFN is a correlated SLFN. Through 

applying the preimage analysis to HB_SLFN to explore the characteristics of the correlated 

SLFN, we consolidate two hyperplane principles. Then, with the illustration of applying these 

two hyperplane principles to the m-bit parity problem, we show that these two hyerplane 

principles have significant implications in constructing a correlated SLFN that perfectly fits N 

distinct samples with less than N hidden nodes. The feature of a fewer number of hidden 



nodes is generally regarded as desirable for preventing over-learning. The number of hidden 

nodes for a Neural Network has been addressed by Huang and Huang (1991) and Arai (1993). 

However, both papers considered binary-valued outputs from the hidden nodes and obtained 

a lower bound of N-1 hidden nodes to have a perfect fit for a sample of size N. To take the 

training advantages of back propagation of errors, most researchers use continuous-valued 

hidden node outputs, as we do here. 

The remainder of this paper is organized as follows. Section II briefly introduces the construction method 

proposed in Huang and Babri (1998). Section III summarizes the application of the preimage analysis to 

HB_SLFN. Section IV shows the powerful usage of the correlated SLFN. Finally, discussion and suggestions 

for future research are offered in Section V. 

 

2. The Construction Method of Huang and Babri (1998) 

Let the parameters of HB_SLFN be as follows: 

 

H
jiw   ≡ the weight between the ith input variable and the jth hidden node, where the 

superscript H throughout the paper refers to quantities related to the hidden 

layer;  

H
jw  ≡  ( H

jw 1 , H
jw 2 , …, H

jIw )T, where (⋅)T denotes the transpose of (⋅);  

H
jw 0  ≡  the bias value of the jth hidden node; 

o
jw  ≡  the weight between the jth hidden node and the output node, where the 

superscript o throughout the paper refers to quantities related to the output 

layer;  

ow  ≡  ( ow1 , ow2 , …, o
Nw )T; and 

ow0  ≡  the bias value of the output node. 



 

Let xc and tc be the cth input pattern and the corresponding target value, respectively, c = 1, ..., 

N;  T ≡ (t1, t2,…, tN)T
 be the vector of desirable outputs for the N input samples; x01 > x02 be 

two arbitrary pre-specified constants. The construction method of Huang and Babri (1998) 

works for any activation function g as long as g(x01) ≠
+∞→x

lim g(x). The procedure is first to 

arbitrarily choose a vector w and label xc such that 

 wT x1 < wT x2 < … < wT xN. (1) 

Then calculate H
jw  and H

jw 0  from eqt. (2) and eqt. (3), in which the values of H
jw  and H

jw 0   

are independent of the target outputs {tc}: 
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Let c
ja  be the jth activation value for the cth input, i.e., the output of the jth hidden node for 

input xc, when ( ,H
jw H

jw 0 ) of HB_SLFN are set as in eqt. (2) and (3). Then  

 ca1 ≡ g(x02), and (4) 

 c
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xwxw ) ∀ 2 ≤ j ≤ N.  (5) 

 

Let ac ≡ (g(x02), ca2 , …, c
Na )T and M ≡ (a1, a2,…, aN)T. Huang and Babri (1998) showed that the 

N samples in {x} space are mapped to N distinctive points in the activation space such that 

the matrix M is invertible. With the bias ow0  set to zero, 

 ow = M-1 T  (6)  
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0  to tc without any error. 

 

3. The Preimage Analysis of HB_SLFN  

To explore the input/output relationship of a general HB_SLFN, we apply the concept of 

preimage analysis proposed in Tsaih and Wan (2007). We present the result below. 

By the structure of HB_SLFN, the net input to the jth hidden node νj = H
jw 0 + ,
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0tanh . Denote a particular collection of H

jiw , H
jw 0 , o

jw , and 

ow0  by θ. Given θ, f is the composite of the following mappings: the input mapping ΦI:ℜI → 

ℜN that maps an input x to a net input ν (i.e., ν = ΦI(x)); the activation mapping ΦA:ℜN → (-1, 

1)N that maps a net input ν to an activation value a (i.e., a = ΦA(ν)); and the output mapping 

ΦO: (-1, 1)N → ( ,
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0 ) that maps an activation value a to an output y (i.e., y = 

ΦO(a)). Note that the range of ΦA and the domain of ΦO are set as (-1, 1)N because aj = 

tanh(νj) and -1 < |tanh(νj)| < 1 for -∞ < νj < ∞ for any j. For the same reason, the range in the 

output space ℑ ≡ ( ,
1
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0 ) contains all achievable output values. For ease of 

reference in later sections, we also call RI the input space, RN the net input space, and (-1, 1)N 

the activation space. 

  For some θ, f may not be a subjective function. In that case, f({ℜI}) ⊂ ℑ, i.e., there 

exists y ∈ ℑ such that y ∉ f({ℜI}). Such an output value y is referred to as void with respect 

to the given θ; otherwise, y is non-void. For instance, assume ∑
=

N

j
j

o
j aw

1
is equal to zero with 

respect to the given θ. Then for all y ∈ ℑ such that y ≠ ow0 , y ∉ f({ℜI}), i.e., y = ow0  is the only 



non-void output value in this case. Formally, the followings are defined for a given θ: 

(a) The image of an input x ∈ ℜI is y ≡ f(x) for y ∈ ℜ. 

(b) An output value y ∈ ℜ is void if y ∉ f({ℜI}), i.e., for all x ∈ ℜI, f(x) ≠ y; otherwise y is  

non-void. 

(c) The preimage of a non-void output value y is )(1 yf − ≡{x ∈ ℜI| f(x) = y}. The preimage 

of a void output value y is the empty set. 

(d) The internal-preimage of a non-void output y is the collection {a ∈ (-1, 1)N| ΦO(a) = y} 

on the activation space. 

(e) A subset A of the activation space is non-void if for each a ∈ A, there exists x in the 

input space such that ΦA ° ΦI(x) = a. 

For any non-void y, ),()( 1111 yyf OAI
−−−− ≡ ΦΦΦ oo  with 

 1−
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 1−
AΦ : (-1, 1)N → ℜN and )(1 a−

AΦ ≡ {ν ∈ ℜN| νj = tanh-1(aj), j = 1, ..., N}, (8)  
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From (7), with the given wo and ow0 , )(1 yO
−Φ  is the linear equation ∑
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= y - ow0 . 

Thus, geometrically for each non-void output value y, )(1 yO
−Φ  is a hyperplane in the 

activation space. As y changes, )(1 yO
−Φ  forms parallel hyperplanes in the activation space; for 

any change of the same magnitude in y, the corresponding hyperplanes are spaced by the 

same distance. The activation space is entirely covered by these parallel )(1 yO
−Φ  hyperplanes, 

orderly in terms of the values of y. These parallel hyperplanes form a (linear) scalar field 

(Tsaih, 1998): For each point a of the activation space, there is only one output value y whose 



)(1 yO
−Φ  hyperplane passes point a; all points on the same (internal preimage) hyperplane are 

associated with the same y value. 

From (8), 1−
AΦ  is a separable function such that each of its components lies along a 

dimension of the activation space; moreover, 1−
AjΦ  is a monotone bijection that defines a one-

to-one mapping between the activation value aj and the net input value νj of the jth hidden 

node. Furthermore, from (9), for the jth hidden node, because H
jw  and H

jw 0  are given 

constants, 1−
IΦ  defines a hyperplane {x ∈ ℜI| xT H

jw  = vj - H
jw 0 } in the input space. Thus, for a 

given activation value aj, 11 −−
AjI ΦΦ o (aj) defines the hyperplane {x ∈ ℜI| xT H

jw = tanh-1(aj) - H
jw 0 } 

in the input space. 

The hyperplanes associated with 11 −−
AjI ΦΦ o  in the input space have properties 

analogous to hyperplanes associated with 1−
OΦ  in the activation space: The hyperplanes 

associated with 11 −−
AjI ΦΦ o  are parallel and form a (linear) scalar activation field in the input 

space; for each point x of the input space, there is only one activation value aj whose 

11 −−
AjI ΦΦ o (aj) hyperplane passes point x; all points on the 11 −−

AjI ΦΦ o (aj) hyperplane are 

associated with the activation value aj. Each hidden node gives rise to an activation field, and 

N hidden nodes set up N independent activation fields in the input space. Thus, for a given θ, 

the preimage of an activation value a by 11 −−
AI ΦΦ o  is the intersection 

I
N

j

H
jj

H
j

I wv
1

0
T }-   =  |{

=
ℜ∈ wxx . 

For ease of reference, denote the intersection I
N

j

H
jj

H
j

I wv
1

0
T }-   =  |{

=
ℜ∈ wxx  by {x|WHx = 

ω(a)}, where WH ≡ ( H
1w , H

2w , …, H
Nw )T is the matrix of weights between the hidden nodes 

and the input layer, ωj(aj) ≡ tanh-1(aj) - H
jw 0  for all 1 ≤ j ≤ N and ω(a) ≡ (ω1(a1), ω2(a2),…, 

ωN(aN))T. Given an activation value a (and θ), ω(a) is simply a vector of known component 



values; the conditions that relates with the activation value a and the input value x, 

 WHx = ω(a), (10)  

is a system of N simultaneous linear equations with I unknowns. From eqt. (2), every row 

vector of WH is linearly dependent with the vector w, i.e., rank(WH) = 1, in which and 

hereafter rank(D) is the rank of matrix D. 

Let (D1 M  D2) be the augmented matrix of two matrices D1 and D2 (with the same 

number of rows). WHx = ω(a) is a set of inconsistent simultaneous equations if 

rank(WH
Mω(a)) = rank(WH) + 1 (Murty 1983, p. 108). In this case, the corresponding point a 

is void. Otherwise, a is non-void. For a non-void a, the set of equations in eqt. (10) defines an 

affine space of dimension I - 1 in the input space. The discussion establishes Lemma 1 below. 

 

Lemma 1: (a) For HB_SLFN, an activation vector a in the activation space is void if its 

corresponding rank(WH
Mω(a)) equals 2. (b) For HB_SLFN, the set of input values x mapped 

onto a non-void a forms a hyperplane in the input space. 

 

 By definition, the non-void set, the set of all non-void a’s in the activation space, is 

{a ∈ (-1, 1)N| aj = tanh(xT H
jw + o

jw ) ∀ j ≥ 1, x ∈ ℜI}. 

From eqt. (2) and eqt. (3), the non-void set of HB_SLFN equals 

{a ∈ (-1, 1)N| a1 = tanh(x02), aj = tanh( xw
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Note that for j ≥ 2, aj is in fact the tanh transform of inputs in the form βj1wTx + βj2, where βj1 

and βj2 are constants for the given w and sample inputs {xc}. Now, from eqt. (1) and eqt. (2), 

H
2w  is a non-zero vector. Thus, all aj’s for j ≥ 3 can be represented in terms of a2 and the non-

void set in the activation space is equivalent to 



{a ∈ (-1, 1)N| a1 = tanh(x02), a2 ∈ (-1, 1), aj = tanh( 1TT
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To deduce the properties of the non-void set, check that eqt. (11) is in the form 

{a ∈ (-1, 1)N| a1 = tanh(x02), a2 ∈ (-1, 1), aj = tanh(δj1tanh-1(a2)+δj2) ∀ j ≥ 3},   (12) 

where the actual values of the non-zero constants δj1 and δj2 are unimportant for subsequent 

discussion. The non-void set is characterized by a single basis a2 ∈ (-1, 1) and the function 

tanh(δj1tanh-1(a2)+δj2) translates an open set a2 ∈ (-1, 1) into an open set for aj. In other 

words, as stated in Lemma 2, geometrically the non-void set of HB_SLFN is a 1-manifold. A 

p-manifold is a Hausdorff space X with a countable basis such that each point x of X has a 

neighborhood that is homomorphic with an open subset of ℜp. A 1-manifold is often called a 

curve (Munkres 1975). For our case, we are working with Euclidean spaces, the commonest 

among Hausdorff spaces. 

 

Lemma 2. The non-void set of HB_SLFN is a 1-manifold. 

 

Remarks. (i) Suppose that |aj| = |a2| for all j ≥ 3. Then the non-void set of HB_SLFN is in fact 

(part of) the line (segment) {a ∈ (-1, 1)N| a1 = tanh(x02), a2 = a ∈ (-1, 1), aj = a (or -a) ∀ j ≥ 

3}. (ii) For each aj such that |aj| ≠ |a2|, the form aj = tanh(δj1tanh-1(a2)+δj2) indicates a degree 

of non-linearity of the manifold. 

Let A(y) be the intersection of 1
O
−Φ (y) and the non-void set in the activation space. A(y) 

is called the internal-preimage of y in the activation space, since any point in it is linked to 

the preimage in the input space. Mathematically, for HB_SLFN and each non-void y, 

A(y) ≡ {a ∈ (-1, 1)N| ow2 a2 +
N

j 3=
∑ o

jw aj = y - ow1 tanh(x02), ow = M-1T, 



a1 = tanh(x02), a2 ∈ (-1, 1), aj = tanh(δj1tanh-1(a2)+δj2) ∀ j ≥ 3}.  (13) 

Effectively A(y) of HB_SLFN is the intersection of a hyperplane and a 1-manifold. 

Geometrically, when the non-void set is a line, each (non-empty) A(y) is the intersection of a 

hyperplane with a line, which gives a point in the activation space. When the non-void set is a 

nonlinear 1-manifold, each (non-empty) A(y) is the intersection of a hyperplane with a curve, 

which gives rise to either a point or a collection of several disjoint points in the activation 

space. 

As a subset of 1
O
−Φ (y), we have the following Lemma 3 and A(y)’s are aligned orderly 

according to 1
O
−Φ (y)’s. Furthermore, A(y)’s associated with all non-void y’s form an internal-

preimage field in the activation space, i.e., there is one and only one A(y) located upon each 

non-void a; and for any a on A(y), its output value is equal to y. 

 

Lemma 3. For a non-void output value y, all points in the set A(y) are at the same hyperplane. 

 

Now for HB_SLFN and any non-void y, its preimage is 

f -1(y) ≡ {x ∈ RI| wT x =
0102

1T2T )(
xx −

− xwxw tanh-1(a2)+
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   3
2w a2 +

N

j 3=
∑ 3

jw tanh(βj1tanh-1(a2) + βj2) = y - 3
1w tanh(x02), 3w = M-1 T, a2 ∈ (-1, 1)}. (14) 

Given θ, the input space is entirely covered by a grouping of (preimage) hyperplanes that 

forms a preimage field. That is, there is one and only one (preimage) hyperplane passing 

through each x; and the corresponding output value of the network to this x is the y value 

associated with this (preimage) hyperplane. 

From Lemma 1(b), when the associated A(y) is a single point, the preimage f -1(y) of a 

non-void output value y is a hyperplane. Similarly, when the associated A(y) consists of 

disjoint points, f -1(y) is a collection of several disjoint hyperplanes. Table 1 shows that the 



preimage f -1(y) of HB_SLFN is dictated by the property of the associated internal-preimage 

A(y). Note that the preimage hyperplanes are aligned orderly because for f -1(y) ≡ {x ∈ RI| 

x= 11 −−
AI ΦΦ o (a), a ∈ A(y)}, A(y)’s are aligned orderly according to 1

O
−Φ (y)’s and the mapping 

of 11 −−
AI ΦΦ o  is a monotone bijection that defines a one-to-one mapping between an activation 

vector and a hyperplane. 

 

Table 1.  The relationship between the internal-preimage A(y) and the preimage f -1(y) of a 

non-void output value y of HB_SLFN 

 A(y) is a single point A(y) consists of disjoint points 

The nature of f -1(y) a hyperplane several disjoint hyperplanes 

 

Note that, given H
jw , H

jw 0 , and ow  in eqt. (2), (3) and (6), the output value y in regard to an arbitrary 

input x can be represented as ow1 tanh(x02)+
N

j 2=
∑ o

jw tanh( H
jw 0 +

I

i 1=
∑ H

jiw xi), since a1 always equals tanh(x02). Thus 

ow1 tanh(x02) can serve as the bias of the output node such that there are only N-1 effective hidden nodes. 

Furthermore, from eqt. (3), vectors H
jw  for 2 ≤ j ≤ N are linearly dependent. In other words, the HB_SLFN as 

constructed is a correlated SLFN, since the weight vectors (from the input layer) of all its (effective) hidden 

nodes are linearly dependent on each other. By the proof of Huang & Babri (1998), any N distinct samples can 

be fitted with zero error through a correlated SLFN. Furthermore, the above preimage analysis has established 

the following Lemma 4. 

 

Lemma 4: For a correlated SLFN, the preimage field is formed from a collection of (preimage) hyperplanes. 

 

Without any loss of generality, let βT x + θ be a preimage hyperplane of the correlated 

SLFN, where β ≡ (β1, β2, …, βI) T being the normal vector and θ the interception of the 

hyperplane. From eqt. (14), β is in parallel with w stated in eqt. (1). Furthermore, from eqt. 



(2), H
jw ≡ αjw for all j, where αj ≠ 0 for all j and αj1

 ≠ αj2
 for all j1 ≠ j2; and from eqt. (9), H

jw  

determines the orientation of the activation hyperplane in the input space corresponding to 

the jth hidden node. Thus, we have Lemma 5. 

 

Lemma 5: For a correlated SLFN, the activation hyperplanes in the input space corresponding to all hidden 

nodes are parallel, and the preimage hyperplane is parallel with the activation hyperplane. 

 

4.  The Reduction of Hidden Nodes – Alternative Constructive Methods from Preimage Analysis 

In this section, we demonstrate the powerful usage of the correlated SLFN with the application to the m-bit 

parity problem. For the m-bit parity problem, I equals m and N equals 2m, where the 2m input samples can be 

regarded as the vertices of an m-dimensional hypercube with any two adjacent vertices having different target 

values. The fact of any two adjacent vertices having different target values renders the m-bit parity problem a 

nonlinearly separable problem and a standard benchmark for the performance of new algorithms for Neural 

Networks (cf. Hohil, Liu, and Smith 1999; Lavretsky 2000; Arslanov, Ashigaliev, and Ismail 2002; Liu, Hohil, 

and Smith 2002; Iyoda, Nobuhara, and Hirota 2003; and Urcid, Ritter, and Iancu 2004 for various issues of the 

m-bit parity problem). Without the loss of generality, take c
ix  ∈ {-1, 1} for all c and i, and set the required 

output to t for odd number of +1’s in input, and to -t otherwise. 

For the m-bit parity problem, the constructive method of Huang & Babri (1998) has a requirement stated 

in eqt. (1) that leads to a correlated SLFN with 2m-1 effective hidden nodes, hereafter denoted as SLFN1. From 

Lemma 5, the normal vector of the preimage hyperplane of SLFN1 is parallel with the w vector picked 

according to eqt. (1). There is a distinctive preimage hyperplane passing through each of the input samples and 

there are a total of 2m distinctive (and linearly independent) points in the activation space of 2m dimensions. 

Thus, the matrix M in eqt. (6) is of full rank, the corresponding inverse matrix M-1 exists, and eqt. (6) sets up a 

unique weight vector wo. 

However, when a correlated SLFN is adopted, Lemma 4 and Lemma 5 lead to the following hyperplane 

principle (i): input patterns with the same required output value are allowed to be on the same preimage 

hyperplane. Furthermore, Lemma 3 leads to the following hyperplane principle (ii): activation points with the 

same required output value are allowed to be on the same hyperplane 1
O
−Φ (y). 



The vector w could be picked according to the hyperplane principle (i) to have a smaller number of 

distinctive activation points corresponding to all training samples. Meanwhile, according to the hyperplane 

principle (ii), the matrix M in eqt. (6) is not necessarily of full rank, though of course the system of simultaneous 

equations in eqt. (15) is still consistent. 

M ow = T         (15) 

In the following, we provide two alternative constructive methods, each of which results in a correlated 

SLFN with a number of effective hidden nodes far less than 2m - 1. The first one is derived merely based on the 

hyperplane principle (i) and the second one is derived based upon the integration of the hyperplane principles (i) 

and (ii). For the m-bit parity problem, the correlated SLFNs released by these two alternative constructive 

methods are hereafter denoted as SLFN2 and SLFN3, respectively. 

For the m-bit parity problem, the first alternative constructive method is summarized in the following eqts. 

(16)-(20): 

 jw~ = 1, i =1, …, m; (16)  

 H
jw = 0.5(x02 - x01) w~ , j = 1, …, m; (17)  

 H
jw 0 = 0.5((2j-m)x01 - (2j-2-m)x02), j = 1, …, m; (18)  
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 ow0 = α tanh(x02); (20)  

where x02 > x01, tanh(x01) ≠ 1 and kt
)
≡ (-1)k+1t for all k. 

Following the hyperplane principle (i), we can pick up a vector w~  stated in eqt. (16) and thus the normal 

vector of the preimage hyperplane of SLFN2, which is parallel with the vector w~ . With vector w~  stated in 

eqt. (16), the 2m input patterns are grouped into m+1 groups according to the number of +1’s in an input pattern, 

i.e., the kth group consists of all input patterns with k +1’s and (m-k) -1’s, k = 0, …, m. Note that the group 

membership of inputs determines the magnitude of T~w xc, whose value equals 2k-m if xc belongs to the kth 

group, and that there is a distinctive preimage hyperplane passing through all input samples of each group. It is 



satisfactory to map all input samples in the kth group onto one single point in the activation space, since they 

have the same required output value. 

With the assignments of eqt. (17) and eqt. (18), the total 2m input samples are mapped onto m+1 activation 

points in (-1, 1)m, { 0a) , …, ma) }, where k
ja) = tanh((k-j+1)x02 - (k-j)x01), k = 0, …, m, j = 1, …, m. Now let 

1M~ i ≡ tanh(x02), i = 1, …, m+1, ijM~ ≡ 1
1

−
−

i
ja) , i = 1, …, m+1, j = 2, …, m+1. Extended from the proof in (Huang 

& Babri, 1998), there exist x02 and x01 such that the (m+1)×(m+1) square matrix M~  is invertible and the 

assignments of eqt. (19) and eqt. (20) can accomplish the learning of m-bit parity problem with zero error. 

With eqts. (16)-(20), the non-void activation set, the internal preimage, the preimage and the various 

inverse functions of SLFN2 are as follows: 
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 the non-void set = {a| aj = tanh(tanh-1(a1) + (j - 1)(x01 - x02)), 2 ≤ j ≤ m, a1 ∈ (-1, 1)}, which is a (non-

linear) curve; 

 A(y) = {a| 
m

j 1=
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jw aj = y - α tanh(x02), aj = tanh(tanh-1(a1) + (j - 1)(x01 - x02)), 2 ≤ j ≤ m, 
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 f -1(y) = {x| wT x =
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jw tanh(tanh-1(a1) + (j - 1)(x01 - x02)) 

= y - α tanh(x02), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
ow

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

mt

t
t

)
M

)

)

1

0

1M , a1 ∈ (-1, 1)}. 

Interestingly, with x02 = 0.5-m and x01 = 0.5-m-2, the synaptic weights obtained from eqt. (17) and (18) are 

the same as the synaptic weights of the network proposed in Rumelhart et al (1986, pp. 334-335) for learning the 

m-bit parity problem. 



For the m-bit parity problem, the second alternative constructive method is summarized as follows: First 

take the same w~  as in eqt. (16). Then let ow0 = 0 and 

H
jw ≡ γj w, j = 1, …, ⎥⎦

⎥
⎢⎣
⎢ +

2
1m ,      (21) 

in which γj’s are arbitrary constants with γj ≠ 0 for all j and γj1 ≠ γj2 for all j1 ≠ j2. Furthermore, 

(1) when m is an odd number: let 

H
jw 0 ≡ 0, j = 1, …, ⎥⎦

⎥
⎢⎣
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2
1m  and      (22) 
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where k
ja~ = tanh((m-2k)γj), j = 1, …, ⎥⎦

⎥
⎢⎣
⎢ +

2
1m , k = 0, …, m; ka~ ≡ ( ka1

~ , …, k
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1
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a )T; and kt
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≡ (-1)k+1t for all k. 

(2) when m is an even number: let 

H
jw 0 ≡ γj, j = 1, …, ⎥⎦

⎥
⎢⎣
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2
1m  and       (24) 
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where k
ja~ = tanh((m-2k+1)γj) , j = 1, …, ⎥⎦

⎥
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2
1m , k = 0, …, m; ka~ ≡ ( ka1

~ , …, k
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( 0~a , …,
1

2
1

~ −⎥⎦
⎥

⎢⎣
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a )T; and kt
)
≡ (-1)k+1t for all k. 

Following the hyperplane principle (i), we learn that the normal vector of the preimage hyperplane of 

SLFN3 is parallel with the w~  picked in eqt. (16), and that the total 2m input patterns are mapped onto m+1 

activation vectors, { 0~a , …, ma~ }, in the activation space. Now the hyperplane principle (ii) suggests a total of 



⎥⎦
⎥

⎢⎣
⎢ +

2
1m  adopted hidden nodes and the eqt. (21) to set up an activation space of ⎥⎦

⎥
⎢⎣
⎢ +

2
1m  dimensions, in which 

k
ja~ = tanh((m-2k)γj+ 2

0jw ), j = 1, …, ⎥⎦
⎥

⎢⎣
⎢ +

2
1m  and ka~ ≡ ( ka1

~ , …, k
ma

⎥⎦
⎥

⎢⎣
⎢ +

2
1

~ )T, k = 0, …, m. Meanwhile, this 

suggestion should be accompanied by a proper arrangement of H
jw 0 ’s such that there are a total of ⎥⎦

⎥
⎢⎣
⎢ +

2
1m  

linearly independent activation vectors in { 0~a , …, ma~ }, and that the system of simultaneous equations in eqt. 

(15) is consistent. Then the ⎥⎦
⎥

⎢⎣
⎢ +

2
1m

× ⎥⎦
⎥

⎢⎣
⎢ +

2
1m  square matrix M̂  is invertible; the corresponding inverse 

matrix 1ˆ −M  exists; and the set-up weight vector wo can accomplish the learning of m-bit parity problem with 

zero error. This suggestion and its subsequent calculation lead to the assignment of eqt. (22) and eqt. (24). 

By checking all 2m samples, it is trivial to show that SLFN3 is a solution of the m-bit parity problem. The 

SLFN3 solution is not surprising, since a similar solution with the sigmoid activation function of hidden nodes 

was given by Setiono (1997), whose study was based upon one of the results by Sontag (1992). 

With eqt. (16) and eqts. (21)-(25), the non-void activation set, the internal preimage, the preimage and the 

various inverse functions of SLFN3 are as follows: 

 1
O
−Φ (y) = {a| 

⎥⎦
⎥

⎢⎣
⎢ +

=
∑
2

1

1

m

j

o
jw aj = y, ow ≡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−⎥⎦
⎥

⎢⎣
⎢ +

−

1
2

1

1

0

1ˆ
m

t

t
t

)

M

)

)

M , a ∈
⎥⎦
⎥

⎢⎣
⎢ +

− 2
1

)1,1(
m

}; 

 the non-void set = {a| aj = tanh(
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γ j tanh-1(a1)), 2 ≤ j ≤ ⎥⎦
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1m , a1 ∈ (-1, 1)} which is a (non-linear) 1-

manifold; 
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a1 ∈ (-1, 1)}. 

 

IV. Discussions and Future Work  

The above preimage analysis shows that HB_SLFN, a correlated SLFN resulting from 

the construction method of Huang & Babri (1998), has preimages in the form of hyperplanes. 

In contrast, most learning algorithms (or constructive methods) in the literature normally lead 

to a non-correlated SLFN whose preimage is nonlinear. Meanwhile, the preimage analysis of 

the correlated SLFN explores hyperplane principles (i) and (ii) that lead to alternative 

construction methods, fitting samples perfectly but with a fewer number of hidden nodes than 

HB_SLFN. 

In future, it is possible to systematically derive the evolution of internal-preimages and preimages of 

the correlated SLFN during the learning period. Based upon the knowledge of this evolution of internal-

preimages and preimages, it is possible to derive a learning algorithm for the correlated SLFN that fits more 

accurately with less learning time. 
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