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Abstract

In this thesis, we propose a rule-based classification algorithm named
ROUSER (ROUgh SEt Rule), which uses the rough set theory as the basis of the
search heuristics in the process of rule generation. We implement ROUSER
using a well developed and widely used toolkit, evaluate it using several public
data sets, and examine its applicability using a real-world case study.

The origin of the problem addressed in this thesis can be traced back to a
real-world problem where the goal is to determine whether a data record
collected from a sensor corresponds to a machine fault. In order to assist in the
root cause analysis of the machine faults, we design and implement a rule-based
classification algorithm that can generate models consisting of human
understandable decision rules to connect symptoms to the cause. Moreover,
there are contradictions in data. For example, two data records collected at
different time points are similar, or the same (except their timestamps), while
one is corresponding to a machine fault but not the other. The challenge is to
analyze data with contradictions. We use the rough set theory to overcome the
challenge, since it is able to process imperfect knowledge.

Researchers have proposed various classification algorithms and
practitioners have applied them to various application domains, while most of
the classification algorithms are designed without a focus on interpretability or
understandability of the models built using the algorithms. ROUSER is

specifically designed to extract human understandable decision rules from



nominal data. What distinguishes ROUSER from most, if not all, other
rule-based classification algorithms is that it utilizes a rough set approach to
select features. ROUSER also provides several ways to decide an appropriate
attribute-value pair for the antecedents of a rule. Moreover, the rule generation
method of ROUSER is based on the separate-and-conquer strategy, and hence it
is more efficient than the indiscernibility matrix method that is widely adopted
in the classification algorithms based on the rough set theory.

We conduct extensive experiments to evaluate the capability of ROUSER.
On about half of the nominal data sets considered in experiments, ROUSER can
achieve comparable or better accuracy than do classification algorithms that are
able to generate decision rules or trees. On some of the discretized data sets,
ROUSER can achieve comparable or better accuracy. We also present the results
of the experiments on the embedded feature selection method and several ways

to decide an appropriate attribute-value pair for the antecedents of a rule.
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CHAPTER 1

INTRODUCTION

1.1 Classification Problem

In machine learning, a classification task is to classify an unknown data record into a
pre-specified category based on values of attributes of the data record. Before the machine is
capable to do the classification task, it needs to learn from some training data where each data
record has been associated with a category. Each attribute of a given data set corresponds to a
domain of continuous values, i.e. real numbers, or a domain of discrete values, i.e. nominal
data.

The proposed classification algorithm is specialized to nominal data. Nominal data is
common in banking. Most of a customer’s personal information, such as gender, marital status,
hobbits, and hometown, are nominal data. Banks would like to have rules to utilize a customer’s
personal information in calculating his or her credit score. In addition, biologists are familiar
with nominal data. Gene data is all nominal, and biologists want to study the relationships
between gene combinations and a certain disease. Furthermore, although data from sensors is
usually real numbers, engineers often need to discretize them into nominal data for further
processing.

To monitor a machine and check if it is stable or not, for example, engineers may want to
use data of real numbers from sensors in the machine to train a classification model, or a

classifier, in which the underlying classification algorithm is based on complex mathematical



methods. Examples of such classification algorithms include Support Vector Machines (SVMs)
[4] or Artificial Neural Networks (ANNSs) [2]. Engineers may obtain high accuracy from the
trained classification models but learn little from them. Engineers need to know the possible
causes of a fault or a problem in order to perform fault diagnosis and resolve the problem, but
they will have difficulty in identifying the possible causes from complex mathematical
expressions given by SVMs or ANNS.

The goal of the classification algorithm in this thesis is to extract human understandable
decision rules from nominal data. A decision rule is a function mapping a data space (a space of
data records) to a class space (a space of categories or class labels). A human understandable
decision rule is helpful for domain experts, such as engineers in the above example, to learn the
causes and effects from data, and it is also important for scientists who intend to acquire

knowledge from data.

1.2 Tree-Based and Rule-Based Classification Algorithms

Decision tree learning is one of the most widely used and practical methods for
inductive inference [13], and a model learned by the method is a discrete-valued function,
which can be represented by a decision tree. A classification algorithm which adapts decision
tree learning method is called a tree-based classification algorithm.

Unlike the tree-based algorithms, the hypotheses learned by a rule-based classification
algorithm are sets of if-then rules, which is the most expressive and human-understandable.
One way to learn a set of rules is re-representing a learned decision tree by a set of
mutual-exclusive rules, one rule for one path from the root to the leaf in the tree. Another
widely used method for rule learning is separate-and-conquer (sequential covering).

First-order rules are rules with variables, and they are more powerful in representation than



decision tree or propositional rules in some special cases. However in this thesis we focus on
learning propositional rules.

Researchers have proposed several classification algorithms with the ability of rule
generation. Rule-based classification algorithms like RIPPER (Repeated Incremental Pruning
to Produce Error Reduction) [3] can generate rules directly, while tree-based classification
algorithms like ID3 [17] and C4.5 [18] can also generate rules after transformation. C4.5 is one
of the most popular classification algorithms [21], while RIPPER represents the state-of-the-art
rule-based classification algorithms [10] [11]. What makes the classification algorithm
proposed in this thesis different from the rule-based and tree-based classification algorithms is
that it decides an attribute-value pair for the antecedents of a rule according to the rough set

theory.

1.3 Rough Set Based Classification Algorithms

Rough set theory is a mathematical tool to describe imprecise knowledge. The most
successful application of rough set is feature selection. Based on the features selected by
rough set approach, researchers attempt to develop classification algorithms. Indiscernibility
matrix [14] is widely adapted by these researchers to generate rules from data. In most
classification algorithms that are based on the rough set theory, the indiscernibility matrix is
used to generate all possible reducts (each of which is a subset of attributes) in nominal data
and then generate rules from reducts. However, the computational cost of the indiscernibility
matrix is high. There exist speed-up methods, but most of them are still based on the
indiscernibility matrix [1][5]. The classification algorithm proposed in this thesis adopts the

separate-and-conquer strategy [7] rather than the indiscernibility matrix, for rule generation.



1.4 Data Mining

Data mining is relatively a young field in computer science, and the goal is to capture
knowledge from data in human-understandable structure for further use [24]. To achieve this
goal, different disciplines like artificial intelligence, machine learning, statistics, and database
systems are fused together.

In a practical application of data mining, some customizations are required to fit a
client’s need. Although the goal of data mining is to capture human-understandable
knowledge, sometimes the discovered knowledge is still too hard for clients to understand. In
order to bridge the gap between the client and engineers, we follow a cooperative data
analysis method. Here we introduce how we implement data mining techniques in cooperative
data analysis. In Figure 1, the User is the client or the person who has the need of data
analysis, and the Miner is the one who analysis the data. When User hands the data to Miner
and introduces the background, the cooperation has begun. First the Miner enters the stage of
improvement, understanding the user’s need, being familiar with the data, making clear the
way to settle the problem, and seeking out the suitable algorithms. After that, the Miner enters
the stage of model building. At this stage, Miner preprocesses the data, and builds models
from the data. Followed by the stage of building rules, Miner summarizes results from the
models and makes them understandable to user. The cycle of the cooperation now turns to the
user’s side, and enters the stage of results inspecting. The user must spend time to inspect the
results and judge them by professional knowledge. We hope that no matter the results coming
from miner is useful or not, User can make some feedback to Miner, since User is the one
who is mostly sensitive to the case and is professional to the background knowledge. This is
the stage of feedback. Receiving the feedback from the User, Miner can think and improve the

analysis methods, and make the cooperative analysis a positive cycle.
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Figure 1. Cooperative data analysis.

1.5 Thesis Organization
The rest of this thesis is organized in the following way: Chapter 2 will give the
preliminaries, and the proposed classification algorithm will be introduced in Chapter 3.
Chapter 4 will be the implementation of the proposed algorithm. The experimental results are
presented in Chapter 5. A case study is given in Chapter 6. The thesis will be concluded in

Chapter 7 with potential directions for future work.



CHAPTER 2

PRELIMINARY

2.1 Rule-Based Classification Algorithms
2.1.1 The Basics

Rule induction is to learn rules from the given training data, and a rule-based
classification algorithm uses the learned rules to classify unseen data records. For classification,
a decision rule is a logic statement with the following form:

conditionl A condition2 A---—class
where a condition is usually an attribute-value pair, indicating a certain value of certain
attribute that is required to trigger the condition.

If a training data record matches all conditions of the rule, we say that the rule covers
the data record,; if the rule covers a data record and classify the data record to the right class,
we say that the rule explains the data record. Given a rule set R, for every possible data
record, if there exists a rule which is able to cover the record, we say that the set of rules are
exhaustive. If no two rules in R cover the same data record, we say that the rule set is
mutually exclusive. If the rule set is not mutually exclusive, a data record can be covered by
several rules and lead to contradicting results. Generally there are two approaches to
overcome this problem: Ordered rules and unordered rules. Ordered rules rank the rules by a
certain criteria (e.g. accuracy, coverage, description length), so only one rule will be chosen to

classify a data record. Unordered rules allow multiple rules to be triggered to classify a single



data record through voting or weighting methods.

RIPPER [3] is a popular rule-based classification algorithm. It has two stages: The
generation stage and the optimization stage. The classification algorithm proposed in this
thesis competes with it in the generation stage.

2.1.2 Separate-and-Conquer

The separate-and-conquer strategy, or sequential covering, first builds a rule that
explains a part of the training data, separates them, and conquers the rest recursively until no
data remains. It ensures that every data record is at least covered by one rule. Figure 2 gives the
separate-and-conguer algorithm, the core of the proposed classification algorithm in this thesis.
Before the algorithm begins, one of the classes is chosen. POSITIVE chooses the data that
should be classified to the chosen class, and NEGATIVE chooses the others. Every rule is

empty in the beginning, and continues to grow until no negative data is covered by it.

Class = CHOOSE(ClassSet)
SEPERATE&CONQUER(Class, TrainData):
RuleSet =@
while POSITIVE(TrainData)#®
Rule=[null—Class]
Covered=COVER(TrainData,Rule)
while NEGATIVE(Covered)#0
GROW(Rule,Covered)
Covered= COVER(Covered ,Rule)
RuleSet=RuleSet U{Rule}
TrainData=TrainData \ Covered

return RuleSet

Figure 2. The SEPERATE&CONQUER algorithm.

2.1.3 Search Heuristics

Search heuristics are used to evaluate the found hypotheses. The GROW function in the



separate-and-conquer algorithm given in Figure 2 searches from the covered data a suitable
attribute and the corresponding value in order to grow a rule. Examples of search heuristics
include Entropy and used in ID3 [17] and C4.5 [18].
Entropy
Entropy is the weighted average of information content of each class and originates from
the ID3 decision tree learning system [7]. Given a set S, the Entropy of the set S is defined as:

N
E(S) = = ) Pr(plog:Pr()
j=1

J

where N is the number of different values of an attribute in S, and Pr(j) is the proportion of the
value j in the set S.
The definition of Entropy above is suitable for decision trees. To be suitable for a

rule-based classification algorithm, the Entropy can be defined as:

p p n n
E(S) = — l — l
() p+n0g2p+n p+nog2p+n

where p is the number of positive instances covered by a given rule r, and n is the number of
positive instances covered by the given rule r. It is obvious that this definition is a special
binary case of the original definition.
Information Gain
Information Gain measures the expected reduction in Entropy caused by partitioning the

instances according to an attribute [13]. The definition of Information Gain is:

Sy
16(S,a) = E(S) — Z %E(S,,)

veValues(a)

where a is the attribute, and S,, is the subset of S for which attribute a has value v.



2.1.4 Pruning and Optimization

We believe that a generated rule might be overfitting, which means that a rule is grown
too precisely to achieve high accuracy, while few data records are explained by this strict rule.
To avoid overfitting, pruning methods were introduced to shorten the rule. In general there are
two categories of pruning methods: Pre-pruning and post-pruning. Pre-pruning methods stop
the growing of the rule by implementing some stopping criteria, such as Purity, Minimum
Description Length, significance, etc. Post-pruning methods drop part of the conditions from a
grown rule by testing if the pruned rule performs better than the original rule on some criteria or
not. Currently the proposed ROUSER adapts no pruning methods, while implementing a
pruning method suitable for ROUSER will be part of the future work.

Rules generated through pruning stage are usually perform well, and experiments show
that the whole rule sets are significantly improved on both the size and the performance
through global optimization, which is a post-induction optimization method on the whole
rule set. Currently ROUSER adapts no optimization methods, while investigating an

optimization method suitable for ROUSER will be part of future work.

2.2 The Rough Set Theory
The rough set theory is first introduced by Zdzistaw 1. Pawlak in 1982 as a mathematical
tool to characterize imprecise knowledge [15][16]. The main difference between a rough set
and a classic set is the appearance of a boundary “region” (not just a boundary), where the
uncertain elements exist, in a rough set. The fuzzy set theory [22] is another tool to characterize
imprecise knowledge. The main difference between a fuzzy set and a rough set is that a fuzzy
set needs a predefined function to decide the “membership degree” of each element. .

Practically speaking, such a membership function is defined under some assumptions and on a



case-by-case basis. Nevertheless, a rough set needs no membership function, since the

uncertain elements are located in the boundary region in a rough set.

2.2.1 Information System and Decision Table
An information system A is a pair, denoted by A = (U, C), where U is the universe, and
C is the set of attributes. When we deal with classification or clustering issues, the elements of
U can be considered as instances. For each attribute a € C, the value set is V,. For each
instance x € U, it contains |C| attribute values, and the value of attribute a in instance x is
denoted by a(x) . The information system A= (U,C) in Table 1 below,

U = {xl,xz,X3,X4,x5,x6,x7, xg}, C = {al, az}, Val — {1, 2,3,4}, Vaz — {1, 2,3,4}

Table I. Information system A=(U,C)

U a | a
X1 1 2
X2 2 1
X3 2 2
X4 3 2
Xs 3 2
X6 3 3
X7 3 4
X8 4 3

A Decision Table [S15] is a special case of an information system with the form
A = (U,CuUD), where d € D is a decision attribute, called decision, and d & C, while each
a € C is called condition. The value set of d is V;. d is also the class in a classification
problem. The value of decision d in instance x is denoted by d(x).For example, the decision

table A = (U,C U D) in Table Il below, U = {x;, x,, x3, X4, X5, X6, X7, xg}, C = {ay,a;},

10



D ={d}, Vo1 ={1,2,34}, Vi ={1,2,3,4} and d = {y,n}, d(x;) =y, d(x5) = n.

Table 11 . Decision table A=(U,CUD)
U d
X1

QD
ey
a8}
S

X2

X3

X4

X5

X6

X7
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2.2.2 Indiscernibility Relation

Indiscernibility relation is an equivalence relation mathematically, but the meaning is
different. When we say that two objects are indiscernible, we mean that the two objects have
exact the same value on every attribute and hence we cannot distinguish the two objects.
However, we still cannot say that the two objects are the same, due to the limit of knowledge
(attributes). A formal definition of indiscernibility relation is given below.

For every instance x,y € U, x,y are indecernable if and only if for every a € C,
a(x) = a(y). For each subset C' < C, C' makes a partition on U, denoted by U/C’, and
C'(x) € U/C’ denotes the block of the partition containing instance x, which means x € C'(x).
For each y € C'(x), a(y) = a(x), which means that instances in the same block of partition
are indiscernible. €' forms an indiscernibility relation and 1(C") defines as follows:

x I(C") y ifand only if a(x) = a(y) foreverya € C'.

For example, consider the decision table in Table 11 above. All partitions are given below:

U/D = {{x1, %2, X3, X4}, {X5, X, X7, Xg}},
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U/C = {{x1}, {x2}, {x3}, {x4, x5}, {x6}, {x7}, {xs}},
U/{al} = {{xl}' {xZi X3}, {X4, X5, x6! X7}, {xB}},

U/{az} = {{x2}, { x1, X3, X4, x5}, {x6, x5}, {x7}}.

2.2.3 Rough Set
The main difference between a rough set and a classic set is the appearance of a boundary
“region” (not just a boundary), as shown in Figure 3 (a), (b). Given a decision table A=(U,C U
D), as shown in Table 11, where U={X1,X2,X3,X4,X5,Xs,X7,Xg} IS the universe or the training data,
C={a1,a,} is the condition or the attribute set of the training data, and D={d} is the decision or
the set of class labels of the training data. A rough set of d=y is shown in Figure 3 (c). Since
there is no difference between the condition of x4 and that of xs, they are in the boundary region.

The visualized rough set of A = (U, C U D) is shown in Figure 3 (c).

Out of the set Out of the set Xgr Xo0 Xg
boundary Xy Xs
(@) (b) (©)

Figure 3. (2) Classic set. (b) Rough set. (c) Rough set for example.

We give an example to help understand a rough set. The set Y corresponding to the set of
d=yis {x1, x5, x3,x,}, as shown in Figure 4 (a), where the set is mapped to a 4x4 data space
of C ={ay,a,}. If we want to define Y precisely through C, we find that elements x, and xs
are indiscernible on C, or x, I(C) xs, since both of them satisfy a; = 3 and a, = 2, and
hence Y cannot be defined precisely through the known attributes. It is easy to see that

X1, X5, X3 are certain to belong to Y. We are not sure if x4, xs belongto Y or not, but we are sure
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that x,,x;, xg do not belong to Y. Hence we can characterize the set Y by two crisp set,
{x1, x5, x5} and {x1, x4, X3, x4, x5}, the lower-approximation and upper-approximation of Y,
respectively, as shown in Figure 4 (b) and (c). This example gives a sense to a rough set: A

rough set is actually a combination of several traditional sets (crisp sets).

a,
4
3
21 Y Y ;iﬁrﬁ Y Y Y Y :'ET#‘
1 Y Y Y

a
1 2 3 4
(@) (b) (c)

Figure 4. () The space of d=y. (b) The lower-approximation of d=y. (c) The upper-approximation of d=y.

Here we give a formal definition to a rough set. Consider a decision table A = (U,C U
D), where D forms a partition U/D and indiscernibility relation I(D). For each subset
C' < C, ' forms a partition U/C" and indiscernibility relation I(C"). When dealing with a
classification problem, I(D) must be approximated by I(C"). For each block of partition
X € U/D, the C'-lower approximation of X is as follows:
C'X) ={x€eU: (C'(x) c X}

The C’'-upper approximation of X is as follows:

CX)y={xeU:CHx nX =+ @}

If C'(X) = F(X), we say that X is C’-definable. The rough set theory defines the set X by

both C'(X) and C'(X). If X is C'-definable, we say X is crisp, otherwise X is rough.
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The positive region of the partition U/D with respect to C' is expressed as
POS,(D), which is a union of every block’s lower-approximation of the partition U/D. The
definition is given below:

posc0)= | | c’on
‘ XGLUJ/D

There are no contradicting data records in POS,(D). An example of a positive region is given

in Figure 5.

BN W A
=
=
=
=

CEl

(@) (b)
Figure 5. (a) The data space. (b) The positive region of U/D .

The dependency degree of D respectto C’ is defined below:

card(P0OS.,(D))
card(U)

VCI(D) =
If y.,(D) =1 we said that A is consistent on C’, which means that there are no contradicting

data records.

2.2.4 Reduct and Core
Given a decision table A = (U,C U D), an attribute a € C is said to be dispensable if

Ye-(a3(D) =vc(D). A subset ' < C is a reduct of C with respect to D if no attribute
a € C' isdispensible. There can be more than one reduct of C, and the set of reducts is denoted

by Red.(D). The core of C with respectto D is defined as below:

14



Corec(D) = ﬂ R
R € Red(D)

Consider the new example in Figure 6, where a new attribute a5 is given, and two
partitions are shown as follow:
U/{as, az} = {{x1}, {x2, x3}, {x4}, {5}, {x6, x7}, {xg}}
U/{az, as} = {{xz}, { x1, x3}, {x4}, {25}, {6, x5}, {273}
It is easy to understand that both {a;,as} and {a,, a5} are reducts of the new decision

table, and {as;} = {a, a3} N {a,, a5} is the core. Graphs for visualization are given in Figure 7

and Figure 8.

u a a; as d

X1 1 2 1 Y

X3 2 1 1 Y

X3 2 2 1 Y

Xg 3 2 2 Y

X5 3 2 3 N

Xg 3 3 1 N

X7 3 4 1 N

Xg 4 3 1 N

@
2 a 3
a;=1 az=2 az;=3

4 N 4 4
3 N [N 3 3
21 Y Y 2 Y 2 N
1 Y 1 1

da a a
1 2 3 4 12 3 4 v 1 2 3 4 !
a 43

(b) (© (d)

Figure 6. (a) The new decision table with as. (b) Data space of a;=1 . (c) Data space of a;=2. (d) Data space of

a3

as=3.
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Figure 7. a;, a; as the reduct.
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Figure 8. a,, azas the reduct.
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2.2.5 Indiscernibility Matrix
Given a decision table A = (U, C U D), a discernibility matrix M,(C) of Aisanxn
matrix, and the entry of the matrix is defined as follows:
¢j ={a € C: a(xy) # a(xj) A d(x;) id(xj)}for i,j = 1,2,...,n
where n is the number of elementsin U and x;,x; € U.

Discernibility function f,(A) is defined as follows:

fr(C) = /\{\/a:a € ¢j,1<i<jsnc;+*0}
A discernibility function f,(A) is a boolean function, all constituents in the disjunctive
normal form of f,(C) are all D-reducts of C, and all prime implecants of the conjunctive
normal form of f,(C) are also all D-reducts of C.

An indiscernibility matrix of decision table in Figure 6 () is given in Figure 9 below.

X1 X2 X3 Mg X5 X5 X7 Xg
X
X3
X3
Xg
X5 a; az a,,83 a3 ay,83 as
X5 4,838z | @,838;3 ayaz ap as
X7 ag,ay ay,8; aga; apas
Xg ag,ay ay,8; aga; aj,a; as

Figure 9. An example of indiscernibility matrix.
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CHAPTER 3

DESIGN OF THE PROPOSED METHOD

3.1 Potential Boundary Region and Discernibility Power
One of the contributions of this thesis is presenting a new search heuristics named
discernibility power based on the rough set theory. Before introducing discernibility power,
we have to redefine the rough set for disambiguation and convenience.
Redefining a Rough Set
Guided by the original definition of rough set theory, we redefine a rough set. Given a
decision table A = (U, C U D), for each block X of partition U/D, the rough set of X is

redefined below:

The positive region of X:
POSA (X) = {x] C(x) = X}.
The negative region of X:
NEGA (X) = {x| C(x) N X=0}.
The boundary region of X:
BOUNDA, (X) = X — POSa (X) — NEGa (X).

Notice that the positive region here is the same as the definition of the lower-approximation of a
rough set, but it differs from the one mentioned in 2.2.3, which is the positive region of D
respect to C. As sketched in Figure 10, a rough set is redefined by 3 disjunctive traditional sets,

positive region, negative region and boundary region. The redefined rough set is also a
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partition of U. The purpose of the redefinition is to connect the rough set theory with the
separate-and-conquer algorithm, which iteratively grows a rule by rejecting as many negative
data records as possible and accepting as many positive data records as possible. Based on the
redefinition of a rough set, we introduce two concepts: Potential boundary region (PotBound)

and discernibility power (DiscPow).

negative

boundary

Figure 10. The redefined rough set.

Potential Boundary Region

Consider the rough set of X defined above, the meaning of the potential boundary
region of attribute a; is the set of elements which will become indiscernible without a;. The
definition of PotBound of X with respect to attribute a; is given below:

PotBound (X, a;) = Bound 4 (X) — Bound4(X),

where A= (U,CUD) and A = (U,CUD —{a;}).

Here is an example of PotBound. Consider sdfsff, the original decision table is A =
(U, C U D), if the attribute a, is removed, the new decision table becomes A" = (U,CUD —
{a;}). Xe, X7 become indiscernible, and the boundary region of Y expands. The expanded part

of the boundary region {xs, X7} is the PotBound of a,.
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e I d X6, X7, Xg

X1 1 2 y

X2 2 1 y

X3 2 2 y

Xa 3 2 y

X5 3 2 n

X 3 3 n X4, X5, X6, X7
X7 3 4 n

Xg 4 3 n

(@) (b)

Figure 11. (a) Decision table A" = (U,CUD —{a}). (b) The new rough set of d=y.

Discernibility Power

The meaning of DiscPow of attribute a; is how many elements will become
indiscernible without a;. The definition of DiscPow of a; with respect to the X is given
below:

DiscPowy (X, a;) = Card(PotBound,(X,a;)).

Reuse the example above, the DiscPow of a; with respectto Y is 2, or DiscPowy(Y,a,) =
2.

DiscPow has the monotonicity property, which means that removing elements from a

rough set, or a partition of U, will never increase the DiscPow. Below is the proof.

NEG,(X)

BOUND4(X)

Figure 12. The rough set of A= (U,CUD).
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NEGAI(X)

BOUND 4 (X) = PotBound,(X) + BOUND,(X)

-

BOUND,(X)

e

-

Figure 13. The rough set of A’ = (U,CUD —{a,})

Given a decision table A = (U, C U D) as shown in Figure 12, the DiscPow of a; € C
with respect to the rough set of X € U/D s as below:
DiscPowy(X, a;) = Card(PotBound,(X, a;)),
and the PotBound,(X, a;) is given below:
PotBound (X, a;) = Boundy (X) — Bound (X)),
where A" = (U,C U D — {a;}), as shown in Figure 13.
Below are definitions for X with respectto A':
The positive region of X:
POSy(X) = {x|C(x) =X}
The negative region of X:
NEGu(X)={x|Cx) n X=0}
The boundary region of X:
BOUND,,(X) = X — POS 1 (X) — NEG 4 (X)
By the PotBound,(X,a;) given above, the boundary region of X has another
definition:

BOUND,,(X) = PotBound,(X,a;) + BOUND4(X),
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hence the rough set of X is equal to {POS,(X), NEG,(X), PotBound,(X,a;),
BOUND4(X)}, which is a partition of U. This indicates that any element e removed from U
originally belongs to exactly one block of this partition. Since DiscPow,(X,a;) =
Card(PotBoundy(X,a;)), the only way to modify the value of DiscPow,(X,a;) is
inserting or removing element from PotBound,(X,a;). It is obvious that removing an
element from PotBound, (X, a;) will cause the DiscPow,(X,a;) to drop, and inserting an
element into PotBound,(X,a;) will cause the DiscPow,(X,a;) to rise. Removing more
than one element from U can be considered as iterally removing an element, and inserting
more than one element from U can be considered as iterally inserting an element. By all
above, removing elements from U will cause the DiscPow,(X,a;) to either hold or drop,
and inserting elements to U will cause the DiscPow,(X, a;) to either hold or rise, and this
is the monotonicity property of DiscPow.

Discernibility Power is one of the search heuristics of the proposed rule-based

algorithm: ROUSER, which will be introduced in the next subsection.

3.2 ROUSER

ROUSER follows the separate-and-conquer algorithm as the framework. Our
contribution here is connecting the proposed DiscPow as the search heuristic used by the
GROW function in the separate-and-conquer algorithm. The GROW function of ROUSER is
shown in Figure 14. ROUSER removes attributes whose values of DiscPow are zero in each
iteration, and it updates DiscPow of every attribute until all values of DiscPow of the remaining
attributes are not zero. If multiple attributes need to be removed, the current version of
ROUSER simply removes the one that is independent of the class entered as a parameter to

the separate-and-conquer algorithm in Figure 2. We use Chi-Squared value to decide the
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degree of independence. Chi-Squared value was first used in feature selection in [9]. Feature

selection with Chi-Square test together with rough set theory was proposed in [19].

GROW(Rule,Covered):
do:
for every attribute a;:
DiscPow; = DISCPOW(a;,Covered)
ChiSquared;= CHISQUARED(a; ,Covered)

Among attributes with DiscPow; =0, ignore a; with

minimum ChiSquared;
while exist a; with DiscPow;= 0
(a,v) = CHOOSE_ATTR&VALUE()

grow the rule with (a,v) as an antecedent

Figure 14. The GROW function.

Once an attribute is removed in an iteration when the GROW function is running, we no
longer need to compute its DiscPow value anymore because of the monotonicity property of
DiscPow. When elements are removed from the rough set covered by current rule, the
DiscPow value of an attribute will be the same or a smaller value. Once the DiscPow value of
the attribute is zero, it will no longer increase and hence the attribute can be removed. The

DISCPOW function is shown in Figure 15.

DISCPOW(a;,Covered):
decision table A=(U,CUD)
letC' be C—{a}
for every elements x; and x;, i < j
if C' (xi) = C'(x;) A D(xi) # D(x))
PotBound(a; ) = PotBound(a; )U{xi, Xj}

return the cardinality of PotBound(a; )

Figure 15. The DISCPOW function.
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The CHOOSE_ATTR&VALUE function in GROW function searches for an
attribute-value pair, i.e. (a; ,vi), that will be used to grow a rule. We use the idea of purity value
[9][20] as the search heuristics. In our algorithm we provide 3 types of purities as options:
PurityOverAll, PurityPotBound, and PurityHybrid. The first is the same as the original
definition of purity, and the others are proposed by us. The definitions of these purities are
given below:

PurityOverAll = [pal/([Pan|*+[Nanl),
where pay is the positive records covered by the candidate attribute and value, and ny is the
negative records covered by the candidate attribute and value;

PurityPotBound = [ppbl/(|Ppbl+[Npol),
where ppy is the positive records in the potential boundary region of the candidate attribute, and
Ppb 1S covered by the candidate attribute and value, and np, is the negative records in the
potential boundary region of the candidate attribute, and ny, is covered by the candidate
attribute and value;

PurityHybrid = [pgol/(IPpb|*Nanl),

where pyy is the positive records in the potential boundary region of the candidate attribute, and
Ppb IS covered by the candidate attribute and value; ny is the negative records covered by the
candidate attribute and value.

In addition to purity, we provide weighted Information Gain as an option for search
heuristic, which is defined as:

WinfoGain = (p2ai/plan)*( 10g(|p2anl/(|p2anl+In2anl)) - log(IpLanl/([PLanl+[n1anf)) )
where pla and nly is the positive and negative records respectively from the original set of
data records, and p2y and n2,, is the positive and negative records respectively from the

chosen subset of data records. The “log(|pLanl/(JpLan|+|nLanl))” is the information content of the
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original set of data records, while “log(|p2an|/(|p2an|+|n2anl))” is the information content of the
chosen subset. “(p2an/plan)” is the weight of the Information Gain.

We also provide 2 methods, and the first is called “Max”, which finds the maximum (i.e.
purity) from all possible attribute-value pairs. The second is called “Frequent Max”, which
finds the most frequent value in each attribute and then finds the maximum (i.e. purity) from
them.

At last, our CHOOSE_ATTR&VALUE function can choose an attribute-value pair in 7

different ways:

1. PurityOverAll, Max
2. PurityPotBound, Max
3. PurityHybrid, Max
4. PurityOverAll, Frequent Max
5. PurityPotBound, Frequent Max
6. PurityHybrid, Frequent Max
7. WinfoGain, Max

ROUSER generates a set of rules for each class. As soon as a rule set is generated, it is
concatenated to the bottom of the rule list. The BUILD CLASSIFIER algorithm of ROUSER is
shown in Figure 16. The class list is sorted by ascending frequency order as RIPPER does. For
an unseen case, ROUSER searches down the rule list and uses the first rule that covers the case

to classify it.
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BUILD_CLASSIFIER():
build a ClassList by ascending frequency order
for each Class in ClassList:
RuleSet=SEPERATE&CONQUER(Class, TrainData)

concatenate the RuleSet to the bottom of the RuleList

return RuleList

Figure 16. The BUILD_CLASSIFIER function.

ROUSER has to decide if two records are indiscernible to determine the boundary and
potential boundary regions. Consider the examples in Figure 17, where there are two records |
and k. If we want to know if record j and record k are indiscernible, we have to check every
attribute’s value. If each attribute has the same value in record j and k, we say that the two

records are indiscernible.

attributes ... a; attributes ...
record j V,
record k V,

Figure 17. The example for checking if two records are indiscernible.

It is a simple task to decide if two records are indiscernible or not. However, missing
values make the task complicated. We define four types of indiscernibility between two values,
as shown in Table Ill, Table IV, Table V, and Table VI. These tables show how we treat a
missing value for an attribute when we try to check if two records are indiscernible. From
type 1 to type 4, the determination of indiscernibility becomes stricter. Currently, ROUSER
uses type 3 to find boundary region, and it uses type 1 to find potential boundary region. Part

of our study in the future is to consider other types of indiscernibility.
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Table I11. Type 1 indiscernibility.

Vi
type 1
missing a
missing same same
Vi o same same
6 same diff
Table IV. Type 2 indiscernibility.
Vj
type 2
missing a
missing diff same
Vi o same same
6 same diff
Table V. Type 3 indiscernibility.
Vi
type 3
missing a
missing same diff
Vi o diff same
6 diff diff
Table VI. Type 4 indiscernibility.
Vj
type 4
missing a
missing diff diff
Vi a diff same
6 diff diff

Records with same conditions and different decisions are considered as contradictions.
Based on the four types of indiscernibility, there will be four types of contradictions.

ROUSER simply ignores the contradictions (type 3) in the training data.
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CHAPTER 4

IMPLEMENTATION OF THE PROPOSED METHOD

4.1 WEKA
Weka[8] is an open source data mining software, which provides free Java code for
machine learning task. Weka is developed by and updated by the University of Waikato in

New Zealand. We use Weka 3.6.5 as our developing environment.

4.1.1 Import Data
Weka accepts several data formats, including the simplest format named
Comma-Separated Values (CSV), and Attribute Relationship File Format (ARFF). After data is
imported, it is stored by the Weka-defined data structures. Each data record is stored by an
Instance object, and the whole data set is stored by an Instances object, which contains
multiple Instance objects. An Attribute object contains all the details about an attribute, like
the data type is nominal or real number, and how many values are in the attribute. Multiple

Attribute objects are also contained in one Instances object.

4.1.2 Classifier
To develop a classifier under Weka’s environment, an abstract class
weka.classifiers.Classifier() must be extended. After that, an abstract method

buildClassifier() must be implemented, and this method is called every time when the
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classifier is invoked. This method builds up the classification model by learning from the
training data. After the model is built, one of the two methods is called for classifying testing
data: classifylnstance() and distributionForinstance(), which utilize the model built by
buildClassifier() to generate the classification result for every single data record. The
difference between these two functions is that, the former one returns exact one class label for

prediction, while the latter one returns an array of probabilities with respect to class labels.

4.1.3 Cross-Validation
Weka offers several evaluation methods, and they are easy to implement. Here we
introduce how to realize a cross-validation method. First an evaluator must be built by
invoking weka.classifiers.Evaluation(), and then we choose the provided method

crossValidateModel().

4.2 Data Structure

The data structure used in the implementation of ROUSER is partially learned from the

JRip provided by Weka.
4.2.1 Rough Set

In order to implement rough set intuitively, a data structure for rough set is built, as in
Figure 18. A data set is split as a partition of 3 blocks, namely positive, boundary and negative,
with respect to the definition of a rough set in Section 3.4, and each block is actually an
Instances object as mentioned in Section 4.1.1. For the convenience, the blocks filled by black
color is empty, while white is not empty. Some necessary information is stored in the structure,
such as DiscPow, Chi-square value, Purity For several further use, such as choosing the best

attribute and value to build a rule. This data structure never appears in Weka.
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roughSet

| Instances Positive Il Instances Boundary || Instances Negative |

Double discPow([]

Double chiSquare(]

Double Purity[]

Figure 18. The data structure of a rough set.

4.2.2 Decision Rule

As mentioned in Section 2.1.1, a decision rule is a logic statement with the following

form:
conditionl A condition2 A---—class,

hence there can be multiple antecedents. We define a data structure named RANtd to store
each condition, and some necessary information is contained in the structure,, such as the
DiscPow, the number of instances covered by the rule so far (from the 1% condition to this
condition), and the number of instances explained by the rule so far, as shown in Figure 19.
This data structure is learned from JRip provided by Weka, however some of the information

stored in it are different.

RAntd

Attribute attr
double value

double discPow
double numCover
double numHit

Figure 19. The data structure of the antecedent of a rule: RAntd.

Another structure learned from JRip provided by Weka is RouserRule, which stores a

rule, as in Figure 20, and it contains two parts: The queue of the antecedents and a class label.
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When a rule is grown, RANtd is generated one after another, and they are stored in a queue in

order.

RouserRule

Queue m Antds
| RAntd | RAntd | RAntd |

» | Double classLabel |

Figure 20. The data structure of a rule: RouserRule.

After a rule is generated, it is stored in the rule set in the growing order, as shown in

Figure 21. The rule set is a queue. This is also learned from JRip provided by Weka.

Queue m_Ruleset

RouserRule
RouserRule
RouserRule
RouserRule

Figure 21. A data structure of the rule set: m_Ruleset.

The whole data structure of the rule model built by ROUSER is shown in Figure 22:

Queue m_Ruleset
RouserRule RouserRule
d RouserRule
Queue m Antds F
[ RAntd | RAntd | RAntd | > | Double classtabel | | RouserRule
- - g RouserRule
°
°
°
RAntd °

Attribute attr
double value

double discPow
double numCover
double numHit

Figure 22. The data structure of ROUSER’s rule model.
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4.3 ROUSER
Following the separate-and-conquer algorithm, ROUSER is implemented under the
Weka environment. As mentioned in Section 4.1.1, the BuildClassifier() function must be

implemented

4.3.1 BuildClassifier()
In the BuildClassifier() function shown in Figure 23, the oneClassRule() is an
implement of the separate-and-conquer algorithm, which build rules for one chosen class. The
oneClassRule() function is called for each class by ascending class order, since we adapt the

ascending ordered rules strategy here, which is also adapted by RIPPER.

start > trg iar]cia'l‘g

4

Build a class list with
ascending frequency order

s the class
List empty?

no

end <

Choose and remove a class
from the class list

y

Build rules of the chosen class
with function: oneClassRule

Figure 23. The flow chart of BuildClassifier().

4.3.2 OneClassRule()
The function OneClassRule() shown in Figure 24 is an implement of the

separate-and-conquer algorithm. The training data is first transformed into a rough set of the
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chosen class, which split the original data into three parts, and we make the boundary region
empty to accelerate further processes. If there are contradicted instances in the data set, they
will be in the boundary region, and there are many methods to handle the contradictions, such
as assigning the most frequent class label to the contradicted instances. We choose t simple
method: Deleting the instances in the boundary region. After that we build a rule from the
rough set by the grow() function. The rule is concatenated at the end of the rule set right after
it is built. After a rule is built, the positive instances explained by the rule are removed from
the positive region. The remaining instances in the rough set will then be used to build another

rule iteratively until all instances are explained.

3| Training Chosen
start data class
— ¥
Y

_Transform the trainingdata
into a rough s:let of the chosen
class

v

Make the boundaryregionin
the rough set empty

Is the positive
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end —
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Queue m_Ruleset set by the function: grow
RouserRule \lr
RouserRule Concatenatetherule at the
RousorRule end of the ruleSet
RouserRule
Update the rough set by
® ~ removingthe positive
° instances explained by the
. rule
°

Figure 24. The flow chart of OneClassRule().
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The grow() function shown in Figure 25 builds a rule that explains some of the positive
instances and none of the negative instances in the rough set. At the beginning an empty rule is
built. DiscPow and Chi-Squared value of each attribute are calculated, and the rule is enriched
by the antecedents built by the bestAntd() function. The longer the rule grows, the fewer the

negative instances are covered. The rule is finally done when none of the negative instances are

covered by the rule.

4.3.3 grow()

start

Rough Set Cglc;ssgn

. S—

Build an empty rule for the
chosen class

¥

Calculate DiscPow for

Y

attributes not being_|gnored

v

Calculate Chi-Square value for
attributes not belng_lgnored

_From the attributes with
DiscPow = 0, remove the one
with lowest Chi-Squarevalue

s there an¥
attribute with
DiscPow = 0?

end

e negative
region of the
ough set empty?

Choose the best attribute-value pair
and builda new Antd with the
function: bestAntd, and concatenate
the new Antd to the rule

|

Ignore the chosen attribute

v

Remove the instances which is not
covered by the latest rule from the
negativeregion of the rough set

Figure 25. The flow chart of grow().
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4.3.4 BestAntd()

BestAntd() chooses the best pair of attribute and value to grow the rule, and is the same as the
CHOOSE_ATTR&VALUE() function in the pseudo code in grow() function in Figure 14.
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CHAPTER 5

EXPERIMENT AND RESULTS

5.1 Environmental Setting
The experiment is executed on a computer with Windows7 32bit operating system. The
memory is 4GB DDR3 SDRAM 1333Mhz, and the chipset is Intel Q67 Express, the CPU is

Intel Core i7 -2600, 3.4GHz. The Weka’s version is 3.6.5.

5.2 Data Sets

The data sets used for experiments are all available from UCI Machine Learning
Repository [23], and the data sets which are originally nominal data are shown in Table VI,
and the discretized data sets which originally contain some real number data are shown in
Table VIII. They are collected from different application domains, such as biology, gaming,
politics, and marketing; the number of their attributes ranges from 5 to 69; the number of their
classes ranges from 2 to 24; since the class numbers are different in each data set, we use bar
charts to visualize the class distributions, for some of them, the class distributions are
imbalanced; and some data sets are with missing values on some attributes.

The data set names with the “ dis” concatenated behind are not pure nominal data
originally. We perform discretization on these data sets, and the details about what attributes are

discretized and how they are discretized are shown in Table IX.
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Table VII. Original nominal data sets.

i #attributes . missing
Data name #instances | . ] Class distribution
including class value
Agaricus-lepiota 8124 23 - - yes
Audiology.standardized 226 69 | |.Ii yes
Y [ | R
Car 1728 6 l o no
House-votes-84 435 16 - . yes
Kr-vs-kp 3196 36 - - no
Nursery 12960 8 II | no
Promotors 106 58 - - no
splice 3190 61 A . no
Tic-tac-toe 958 9 - - no
Table VIII. Discretized data sets.
) #attributes YA missing
Data name #instances | . ] Class distribution
including class value
Abalone_dis 4177 9 . = no
i
Adult_dis 32561 15 - o
Australian_dis 690 15 - - no
Balance-scale_dis 625 5 (o . . no
German_dis 1000 21 - [r— no
Hearts_dis 270 14 - - no
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Table 1X. Details of discretization.

i i L Equal bean discretization i )
Data name | Supervised discretization Numerical to nominal
(number of bean)
Abalone 2,3,4,5,6,7,8 9(5)
Adults 1,511,12,13 3(10)
Australian 2,3,7,10,13,14 1,45,6,8,9,11,12,15
Balance-scale 1,2,3,4
German 2 5(10),13(10) 8,11,16,18,21
Heart 8,10 1(5),4(5),5(5) 2,3,6,7,9,11,12,13,14

We defined four types of contradictions in section 3.2, and the number of contradictions

in each data set is shown in Table X and Table XI.

Table X. Number of contradictions in original nominal data sets

Data sets Number of instances Nemb( of contracictions
pel | type? | type3 | typed
Agaricus-lepiota 8124 0 0 0 0
Audiology.standardized 200 0 0 0 0
Car 1728 0 0 0 0
House-votes-84 435 293 149 0 0
Kr-vs-kp 3196 0 0 0 0
Nursery 12960 0 0 0 0
Promoters 106 0 0 0 0
Splice 3190 2 2 2 2
Tic-tac-toe 958 0 0 0 0
Table XI. Number of contradictions in discretized data sets.
_ Number of contradictions
Data sets number of instances
tpel | type? | type3 | typed
Abalone_dis 4177 3190 3190 3190, 3190
Adult_dis 32561 4431 4431 4431] 4431
Australian_dis 690 29 29 29 29
Balance-scale_dis 625 0 0 0 0
German_dis 1000 0 0 0 0
Hearts_dis 270 2 2 2 2
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5.3 Results

We design several experiments to examine ROUSER’s performance in different
situations. We use 10-fold cross-validation to evaluate the classification performance.

The results for the data sets which are original nominal are summarized in Table XII.
The numbers reported in Table XII are accuracy rates in percentage, and the maximum values
are in bold, and the minimum values are underlined. As we mentioned in section 3.2 that
ROUSER has seven choices to search for the attribute-value pair to grow a rule, and the
results of all the seven choices are shown in Table XII. Four out of nine accuracy results of
ROUSER_6 are better than or the same as both J48 and JRip. On two data sets ROUSERSs are
outperformed by JRip and J48. ROUSER_1 and ROUSER_6 are the most stable versions
among these seven versions, and their accuracy rates are comparable to J48 and JRip.
However, ROUSER does not perform well on the data sets car and splice. We think that there
are no optimization stage and pruning methods in ROUSER (but there are in RIPPER) and
overfitting occurs. The car data set is a data set with hierarchy structure which is easily
captured by a tree structure, and we think that this is the reason that J48 outperforms JRip and
ROSUER. The embedded feature selection method of ROUSER performs well on the splice
data set (as shown in experiment results later), but ROUSER itself does not perform well on
this data set. We think that this might be the overfitting problem. A deeper investigation of this
will be part of the future work.

We design an experiment to examine ROUSER’s capability to handle missing values. We
choose three data sets: Kr-vs-kp, Nursery, and Tic-tac-toe, to produce artificial data sets with
missing values. The missing values are distributed randomly in each attribute with the same
percentage (10%, 20%, 30%), while the distributions of missing values are different between

attributes. The class attribute has no missing values, and besides the class attribute, no
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instances have all missing values. Missing values cause contradictions, and the number of

contradictions in each data set is shown in Table XII1.

Table XII. Results for original nominal data sets.

Accuracy (%)
Data sets ROUSER .
JRip | J48
1 2 3 4 5 6 7
Agaricus-lepiota 100.0| 100.0| 100.0{ 100.0| 100.0| 100.0{ 100.0{ 100.0| 100.0
Audiology.standardized 78.0| 75.5 77.00 775 76.5| 77.0 76.5] 715/ 775
Car 845 85.2| 83.0, 82.2| 84.8 835 853 883 927
House-votes-84 93.3] 945| 93.1] 945 945 94.7| 93.8] 956/ 96.3
Kr-vs-kp 99.2| 99.3] 99.5] 919/ 99.3] 99.6/ 99.4| 99.2| 995
Nursery 98.3| 97.8] 98.3] 76.9| 97.1| 98.3] 98.0] 96.8 97.2
Promoters 80.2| 83.0] 74.5| 755 84.0 84.0f 79.3] 821 811
Splice 83.0] 82.6/ 79.2| 8204 83.2| 80.3] 84.4| 938 942
Tic-tac-toe 96.9] 91.8/ 96.1 91.7| 94.2| 97.2| 96.8] 97.7| 85.8
Table XI1I1. Number of contradictions in artificial missing values in data sets.
number of contradictions
Data sets total
typel type2 type3 typed
Kr-vs-kp 10% average 3196 604.8 451.9 0 0
Kr-vs-kp 20% average 3196 1865 830.4 0 0
Kr-vs-kp 30% average 3196  2892.5 574.1 0 0
Nursery 10% average 12960 11260.5/ 11198.8 155.6 0
Nursery 20% average 12960| 12958.6| 12958.4 289.5 0
Nursery 30% average 12960 12960 12960 636.8 0
Tic-tac-toe 10% average 958 214.2 196.2 0 0
Tic-tac-toe 20% average 958 693.9 620.5 04 0
Tic-tac-toe 30% average 958 928.4 876.5 1.2 0

The results are shown in Table XIV. The numbers reported in Table XIV are accuracy

rates in percentage, and except those of the original (0%) data sets, each accuracy rate is the

average accuracy rate of 10 different artificial data sets with the same rate of missing value.

The results indicate that the performances of ROUSER are similar to JRip in Kr-vs-kp
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and Tic-tac-toe data sets, better than J48 in Tic-tac-toe data set, and worse than J48 in
Kr-vs-kp data set. The accuracy rate of ROUSER drops faster than JRip and J48 do in
Nursery data set when missing value percentage rises. We speculate that the Nursery data set
with missing values have too many type 3 contradictions, which will be ignored by ROUSER
as we mentioned in section 3.2, or there are too many type 1 contradictions and this makes
ROUSER miscalculate the potential boundary region. To address the problem, we may adapt

probability theory and assign contradicted instances to the class with higher probability.

Table XIV. Results for artificial missing values in data sets.

Accuracy (%)
data sets :
ROUSER_1 | ROUSER_6 JRip J48
Kr-vs-kp 0% (original) 99.2 99.6 99.2 99.5
Kr-vs-kp 10% average 91.2 90.6 91.2 94.0
Kr-vs-kp 20% average 85.5 84.8 84.3 88.6
Kr-vs-kp 30% average 78.1 78.0 78.8 84.1
Nursery 0% (original) 98.3 98.3 96.8 97.2
Nursery 10% average 56.5 57.1 83.8 88.3
Nursery 20% average 41.7 44.2 74.3 80.5
Nursery 30% average 39.2 40.0 66.4 73.7
Tic-tac-toe 0% (original) 96.9 97.2 97.7 85.8
Tic-tac-toe 10% average 86.4 86.3 89.2 79.8
Tic-tac-toe 20% average 80.1 79.6 80.9 73.1
tic-tac-toe 30% average 74.2 74.9 74.0 70.0

We design an experiment to examine the “ordered rules” strategy. ROUSER with
ascending order rules are compared with ROUSER with descending order rules. The
experimental results are given in Table XV. Each result is presented in two numbers, and the
upper number is the original accuracy with ascending order rules, and the lower number is the
difference after we switch to descending ordered rules. Ascending order is apparently better

than descending order only in the Audiology.standardized data set, which has 24 class labels
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with imbalanced distribution. However descending order is better in the Car data set and the
accuracy becomes comparable with the accuracy of JRip and J48. Descending order is better
than ascending order in the Splice data set. However the accuracy is still not comparable with
the accuracy of JRip and J48. We observe that imbalanced multi-class data sets are sensitive

to the ordered rule strategy. A deeper investigation of this will be part of the future work.

Table XV. Results for ordered rule strategy.

Accuracy (%)

Data sets
1 2 3 4 5 6 7

100.0] 100.0{ 100.0| 100.0{ 100.0; 100.0{ 100.0

Agaricus-lepiota
0.0 0.0 0.0 0.0 0.0 0.0 0.0

78.0 755 77.0[ 775 765 77.0 76.5

Audiology.standardized
-7.0 -3.5| 55 -25 -35 -55 -25

845/ 852 83.0 822 84.8 835 853
+6.0 +4.4| +7.2| +43] +49| +6.3] +53

Car

93.3] 945 93.1] 945 945 947/ 938
+1.6) -0.5| +0.2 0.0f -0.5] -0.7/ -05

House-votes-84

99.2] 99.3] 995 919 993 99.6f 994

Kr-vs-kp
0.0, +0.1 -0.3 0.0 +0.1 -04 -0.1
98.3] 97.8/ 98.3] 76.9 97.1| 98.3 98.0
Nursery
+0.3] -04| +04 0.1 0.0/ +0.2| +0.3
80.2| 83.0] 74.5| 755 84.0f 84.0, 79.3
Promoters
+2.8| +1.9| +10.4| +0.9| +0.9/ +0.0 -1.0
Solice 83.0f 82.6| 79.2| 820 832 80.3 844
P +43 +40 +80| +06| +35 +53 +34
) 96.9] 91.8/ 96.1] 91.7| 942 97.2| 96.8
Tic-tac-toe

+0.2] +1.7) +25 +0.7] +0.4| +15 +14

We design an experiment to prove that Chi-Square value is useful in the rule growing
phase of ROUSER. In our original design, we adapt the Chi-Square value to reduce the
attributes iteratively. To make a contrast, we replace the Chi-Square value with Information

Gain, which is provided by Weka, and the results of the experiments on such a replacement are
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given in Table XVI. The numbers reported in Table XV are accuracy rates in percentage. Each

result is presented in two numbers, and the upper number is the original accuracy before we

replace Chi-Square value with Information Gain, and the lower number is the difference after

we do such a replacement. We discover that the performance of Chi-Square version is

obviously better than Information Gain version on the Audiology.standardized data set. The

performances on the Promoters data set which are originally bad become better after we

replace Chi-Square value with the Information Gain. However, the performances which are

originally good become worse. Our conclusion is that ROUSER_1 and ROUSER_6 with

Chi-Square feature selection are still more stable than all the other combinations.

Table XVI. Results of replacing Chi-Square value with Information Gain in ROUSER.

Accuracy (%) with Information Gain feature selection

Data sets
1 2 3 4 5 6 7
_ _ 100.0{ 100.0| 100.0f 100.0f 100.0f 100.0f 100.0
Agaricus-lepiota
0.0 0.0 0.0 0.0 0.0 0.0 0.0
i : 78.0, 755/ 77.0 775 765 77.0f 765
Audiology.standardized
-5.0 -3.0 -3.5 -5.5 -4.0 -3.5 -3.5
Car 845 852 83.0f 822 848 835 853
+0.3| +0.2| +0.2 0.0 0.0, +0.1 -0.1
93.3] 945 93.1] 945 945 94.7| 938
House-votes-84
+1.6{ +1.1] +0.9 -0.9] +1.1 -0.2 -0.5
99.2| 1 99.3] 995 919 99.3] 99.6/ 994
Kr-vs-kp
+0.2 -0.1 0.0 0.0 -0.1 -0.2 0.0
98.3] 97.8/ 983 769 971 98.3] 980
Nursery
+0.2 -0.1] +0.2| +14, +0.1] +0.1 0.0
80.2| 83.0f 745 755  84.0 84.0f 793
Promoters
0.0 -4.7) +11.3] +85 -3.8 5.7 +6.5
_ 83.0f 826 79.2] 820 832 803 844
Splice
-0.3 -1.0 -1.1 -3.2 -1.6 -1.6| +0.5
) 96.9] 918/ 96.1] 917 942 97.2| 96.8
Tic-tac-toe
+0.3| +0.6 0.0 -0.3 -0.6 0.0 0.0

43




The experimental results of the discretized data set are summarized in Table XVII. The
numbers reported in Table XVII are accuracy rates in percentage. The performances of
ROUSER on discretized data set are not as well as the performances in the original nominal
data sets, and we speculate the reason is that discretization may assign the same value to
different real numbers, and this may make instances indiscernible and be considered as
contradictions by ROUSER. As we mentioned before, ROUSER simply discards the
contradictions, and hence it shows poor performance on these discretized data sets.

Similarly, we can adapt probability theory and assign contradicted instances to the class
with higher probability. We can also design an embedded discretization method for ROUSER,
like what is done in JRip or J48, to handle real number data directly. From Table XI we
discover that there are many contradictions in Abalone_dis, Adult_dis, and Australian_dis

data sets, and hence ROUSER performs not as well as JRip and J48 on these data sets.

Table XVII. Results for discretized data sets.

Accuracy (%)
Data sets ROUSER )
JRip | J48
1 2 3 4 5 6 7
Abalone_dis 742 716 735| 714 69.8| 724 749| 77.2| 776
Adult_dis 82.6| 83.3| 822 77.6| 827 814 832 84.0] 86.8
Australian_dis 82.0/ 78.3| 812 79.7| 79.1 77.1| 80.7| 85.8 86.2
Balance-scale_dis 74.1 739 73.8] 56.2| 72.8| 72.6| 73.0f 73.8] 63.2
German_dis 68.5| 66.7| 64.2| 71.1| 68.3] 65.7] 69.0f 71.0] 71.1
Hearts_dis 73.7) 73.0, 74.4| 70.0f 74.8| 759 74.8| 77.8] 752

The execution time in millisecond of ROUSER, JRip and J48 are shown in Table XVIII.
We measure the training time of entire data set, instead of 10-fold. It is clear that tree-based
strategy overwhelms the separate-and-conquer strategy in execution time, and the reason is

simple: Unlike the tree-based strategy which ignores the data divided away, although the
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separate-and-conguer strategy “separates” positive data in each iteration of building a rule, it
needs all the negative data to stay in memory to complete this mission, and hence the same
negative data will be executed for several times.

There are two more reasons for ROUSER’s high execution time. First, DiscPow itself is
not so “greedy”. To explain this, we make a comparison with Information Gain, which is
adapted by C4.5 and RIPPER. When calculating the Information Gain for choosing an
attribute, only the attribute itself and the class attribute are involved in the calculation.
However, when calculating the DiscPow of an attribute, the whole decision table is involved,
since we need to compare all the values between each pair of records. Second, ROUSER has
no pruning methods and may build precise rules to explain only a few data records, and hence

too many rules are built and time is wasted.

Table XVIII. Training time.

Training time (ms)
Data sets ROUSER .

1 2 3 4 5 6 7 IRip | J48
Agaricus-lepiota 68398| 67689 72931 72715 68608 70509 69899| 690/ 102
Audiology.standardized 4242| 4048 4559  4187| 4220 4411 3953 36 9
Car 7025 10240| 7594 7524| 10511/ 7369 8847| 483 5
House-votes-84 212 236 268 226 233 270 275 4 2
Kr-vs-kp 57657| 23548 58968 16565 23893| 53409| 34280 280| 22
Nursery 598793| 773254| 636622 415997| 826664| 633169| 840923| 30428| 26
Promoters 184 219 162 191 218 167 235 4 2
Splice 1003074(1364238|1441220| 676261|1352105|1247409| 701302| 297| 38
Tic-tac-toe 440| 1442|1126 495/ 2166 573 528 31 3

If we consider only the calculation complexity, ROUSER_1~3 should be faster than
ROUSER_4~6, since searching for the MAX purity takes more time than searching for the
FREQUENT MAX purity. However, the results tell us a different story. The reason can be

discovered by examining the rule set size, as shown in Table XIX, where each rule set is built
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from entire data set instead of data sets generated by the 10-fold cross-validation method.
Since the calculation of DiscPow is more complex than purity, and DiscPow will be
calculated several times when generating a rule, the rule set size dominates the execution time.
We also discover that JRip’s rule set size is usually smaller than ROUSER, and that is because
JRip adapts some pruning methods and optimization methods, and hence it makes the rule set
size smaller. Some rule set size are extremely high, while their accuracy is low, and this could
be considered as an overfitting problem, and we think this might be the reason why ROUSER

performs not well on Car and Splice data sets.

Table XIX. Rule set size.

Rule set size
Data sets ROUSER ]
1 2 3 4 5 6 7 JRip | J48
Agaricus-lepiota 12y 11, 12| 12| 11} 11| 11 8| 24
Audiology.standardized 55| 53| 54| 52| 54| 54 52 27| 31
Car 230 265/ 229| 230| 270| 229| 230 97| 131
House-votes-84 12| 13| 15 13| 13, 16| 16 10 6
Kr-vs-kp 29| 25| 31 6] 25/ 27| 25 18| 31
Nursery 588| 671/ 569| 389 829/ 569 585/ 317 359
Promoters 8 9 7 8 9 7 9 9 19
Splice 295| 346| 362| 125/ 329| 324| 242 63| 184
Tic-tac-toe 19| 46| 37| 19| 79| 21| 17 12| 95

We design an experiment to prove the feature selection method embedded in ROUSER
is useful. The feature selection method is in the grow function of ROUSER, which iteratively
ignores an attribute with DiscPow=0 and the lowest Chi-Square value. This method selects
attributes for one class, and hence we perform the feature selection method on all classes and
union each result as the final result. We name it DiscPow_Chi method for convenience.

DiscPow_Chi is a deterministic feature selection method which returns a fixed number of
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selected attributes and needs no additional threshold settings, while the Information Gain
method simply returns the rank of all attributes and an appropriate threshold is needed. Thus
we first choose CfsSubsetEval method together with BestFirst search method provided by
Weka, which is also a deterministic feature selection, as the comparison. We compare the
accuracy of JRip and J48 between the original data sets and the feature selected data sets. The
results of the experiment are shown in Table XX. In data sets car and nursery, CfsSubsetEval
method chooses only 1 attribute, which is obviously not able to represent the original data sets.
In data set splice, DiscPow_Chi selects half amount of attributes than CfsSubsetEval, while
the accuracy rates of both JRip and J48 are merely the same. In the data sets house-votes-84
CfsSubsetEval outperforms DiscPow_Chi by choosing fewer attributes while keeping the
high accuracy rate, and in the data set promoters CfsSubsetEval outperforms DiscPow_Chi
by higher accuracy rate. Both DiscPow_Chi and CfsSubsetEval failed in the tic-tac-toe data
set, but the problem of CfsSubsetEval is far more serious. To sum up, it is more possible for
DiscPow_Chi than for CfsSubsetEval to avoid accuracy loss.

We also make a comparison to Information Gain feature selection provided by Weka,
which ranks each attribute from high to low. We choose attributes with higher rank, and the
amount is the same with what DiscPow_Chi chose. The results are shown in Table XXI. On
data sets Agaricus-lepiota, Audiology.standardized and Kr-vs-kp, DiscPow_Chi performs
better than Information Gain feature selection, while Information Gain feature selection
performs better on the Promoters data set. The other results are similar. The accuracy results
show that DiscPow_Chi is no worse than Information Gain feature selection, but even better,
since DiscPow_Chi is deterministic, and save the work of determining the number of selected
attributes. The idea is very different between DiscPow_Chi and Information Gain feature

selection. DiscPow_Chi iteratively removes the attributes that we do not need, while the idea
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of Information Gain feature selection is to select what we want.

Table XX. The comparison of DiscPow_Chi and CfsSubsetEval.

Data name Feature selection method !\Iumber of Aecuracy
attributes selected JRip J48

none 22 100.0 100.0

Agaricus-lepiota DiscPow_Chi 5 100.0 100.0
CfsSubsetEval 99.0 99.0

none 69 71.5 77.5

Audiology.standardized DiscPow_Chi 13 69.0 76.0
CfsSubsetEval 14 71.0 77.0

none 6 88.3 92.7

Car DiscPow_Chi 6 88.3 92.7
CfsSubsetEval 1 70.0 70.0

none 16 95.6 96.3

House-votes-84 DiscPow_Chi 8 95.4 95.9
CfsSubsetEval 4 95.6 96.0

none 36 99.2 99.5

Kr-vs-kp DiscPow_Chi 29 99.0 99.1
CfsSubsetEval 94.1 94.0

none 96.8 97.2

Nursery DiscPow_Chi 96.8 97.2
CfsSubsetEval 71.0 71.0

none 57 82.1 68.9

Promoters DiscPow_Chi 4 82.1 76.4
CfsSubsetEval 6 86.8 79.3

none 60 93.8 94.2

Splice DiscPow_Chi 11 93.7 94.3
CfsSubsetEval 22 94.4 94.4

none 97.7 85.8

Tic-tac-toe DiscPow_Chi 90.0 85.2
CfsSubsetEval 76.3 78.2
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Table XXI. The comparison of DiscPow_Chi and Information Gain feature selection.

Number Accuracy (%)
Data sets of JRip J48
selected ) ) . ) . )

attributes DiscPow_Chi | InfoGain | DiscPow_Chi |InfoGain
Agaricus-lepiota 5/22 100.0 99.9 100.0 99.9
Audiology.standardized 13/69 69.0 66.5 76.0 70.5
Car 6/6 88.3 88.3 92.7 92.7
House-votes-84 8/16 95.4 95.6 95.9 95.2
Kr-vs-kp 29/36 99.0 96.7 99.1 97.2
Nursery 8/8 96.8 96.8 97.2 97.2
Promoters 4/57 82.1 84.0 76.4 84.0
Splice 11/60 93.7 95.2 94.3 945
Tic-tac-toe 8/9 90.0 91.3 85.2 85.3

5.4 Summary

The performance of ROUSER in accuracy is usually no worse and sometimes better

than that of JRip or J48. However, the time cost is high. ROUSER is sensitive to

contradictions which are originally in the data, since ROUSER simply ignores contradictions.

The embedded feature selection method is deterministic and more possible to avoid accuracy

loss. ROUSER has some good properties, and how to keep these good properties while

avoiding the shortcomings would be the focus of the feature work.
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CHAPTER 6

CASE STUDY

6.1 Introduction

The objective of this case study is to find out the cause of machine fault of a roughing
mill in a hot strip mill of the largest steel making company in Taiwan. First we will introduce
how to implement data mining techniques in a cooperative data analysis. Second we will
describe the background knowledge of the case study and make a brief explanation to the data.
Then we will show how we build up models and rules to analyze the cause of machine fault.
After that, we will look into the data and inspect the rules we built. Finally we will give a
conclusion about this case study.

6.1.1 Back Ground Knowledge

We first introduce the background knowledge about the manufacturing process. The
function of a hot strip mill is to turn a slab into a coil for the convenience of further process.
There are two hot strip mills, and the structures inside them are different. Our attention is on
one of the two hot strip mills. After a slab enters the hot strip mill, it must be heated up at the
furnace to become soft. A prepared slab will then enter the roughing mill. A roughing stand
contains two parts, the edge mill and the rough mill; the former adjusts the slab in a good
width, while the later thins the slab. After this, a slab becomes a transfer bar. The transfer bar
will be sliced into pieces by the crop shear, and finally it enters the finish mill and becomes a

coil after cooling.
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6.1.2 Problem

The problem occurs at the rough mill. The top and bottom working rolls of the rough
mill directly contact the slab when rolling, and the torque comes from the engines connected by
the spindle. In these recent years the spindles broke frequently, and the experts suspect that the
cause is that a slip happens during the rolling process. The rough mill rolls the slab back and
forth for 5 passes, and each rolling pass makes the slab thinner. A slip may occur in each
rolling pass, and the spindles may suffer unexpected impact and a slip may lead to metal
fatigue.

6.1.3 Data
The data collected from the mill can be roughly categorized into three types, namely the

materials, the mill, and the rolls.
Material Data

Material data contains the features about the material, such as the steel family, and the
steels in the same family have similar properties. The material data also contains the thickness
drafts of each pass performed by the rough mill.

Mill Data

Mill data comes from the mill itself. Some attributes like the moving speed of a slab are
not easily to measure directly, and hence the experts measure the rolling speed from the mill
to represent the slab moving speed; the speed draft of a slab is also a parameter setting of the
mill. The slab has a threading speed, which is the initial speed of threading. The running
speed is the speed right before the slab enters the mill. Only the default settings of these two
speeds are recorded. The roll torque of working rolls is generated by the motors of mill. The

roll force pressed on the slab is also generated by the motors of mill.
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Roll Data
There are two working rolls, top and bottom, and there are also plenty of measurement
results about the working rolls. Here we introduce the rolling torque only. The difference
between the roll torque and the rolling torque is that the roll torque is measured from the

motors of the mill while the rolling torque is measured from the working rolls themselves.

6.2 Model Building

6.2.1 Data Preprocessing
Data Cleaning

There are 21,907 data records and 187 attributes (excluding the class attributes) in the
original data set, which is collected from the hot strip mill for 2 months. After data cleaning,
including removing error data records, redundant attributes, duplicate attributes, serial
numbers, and time stamps, 21,891 data records and 172 attributes (excluding the class
attributes) remain.

Data Reformatting

Each data record is bound to a particular piece of material, which is originally a slab and
finally a coil, and hence data collected from 5 passes sticks together in one record. The static
information such as material data we introduced before is also included. Torque ratio of each
pass is also in one record. It is obvious that data in this format is not suitable for any
classification algorithm to analyze, so we reformat the original data set into 5 data sets based
on the pass number.

As we mentioned before, materials in the same family share similar physical properties,
and hence we divide the original data for each family. There are 27 families in the original

data set, and 5 passes for each record, and hence the original data set is reformatted into
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27*5=135 data sets.
Data Discretization

Since the proposed ROUSER processes nominal data only, discretized data sets are
made from the 135 data sets. The discretized method is provided by Weka, and it is an
implementation of Fayyad & Irani's MDL method [6].

Data Integration: Torque Ratio

The torque ratio is the class attribute, and it is fused from the rolling torque we just
mentioned. The value of torque ratio can be used to determine a slip is happening or not. The
value range of torque ratio is [0, 1]. The safe range of pass 1 is (0.45, 0.55), and so is that of
pass 2; the safe range is (0.4, 0.6) for pass 3; and it is (0.35, 0.75) for passes 4 and 5. The
others are slip range.

Feature Selection

Some attributes are removed, and the reasons vary. Some of them are removed since
they are already known to be dependent on the class attribute, and this type of attributes will
dominate the results. However they are not helpful to explain the problem. Another reason of
why the attributes are removed is that the timing they are measured is after the slip happens.
Absolute time stamps and serial numbers are also removed.

Slip data records are rare in the final data sets.

6.2.2 Classification Algorithms

We use ROUSER to analyze the discretized data sets, and we use JRip and J48 provided
by Weka to analyze data sets with real numbers. We use the default setting of JRip (-F 3 -N 2.0
-0 2 -S 1) together with two more settings ((F3-N1.0-O0-S1-E,-F3-N1.0-00-S1-E
-P). We also use the default setting of J48 (-C 0.25 -M 2) together with two more setting (-S

-C 0.5 -M 1, -S -C 0.25 -M 2). Since the slip records are rare in the data set, the default
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settings of JRip and J48 may consider them as noise and ignore them to pursue the overall
accuracy; as a result, the models are too simple and explain nothing. So we try several
different settings to remove the mechanisms which are designed to prevent models from

growing too luxuriant and becoming over fitting.

6.3 Inspect the Result Rules
We generate many rule sets from 135 data sets with 3 algorithms and different settings,
and we give some of the rules. Following are the rules generated by J48 on the data set of family

27 at pass 5:

(R2 roll torque_pass5 [KNm]\[1] >= 3078.667) => Torque ratio p5=[0.65,1] (27.0/0.0).
(R2 roll torque_pass5 [KNm]\[1] >= 2585.333) and

(R2 total roll force_pass5 [kKN]\[1] <= 23046.67) => Torque ratio p5=[0.65,1] (3.0/0.0).

The first rule indicates that if the torque value measured from the motors of mill for pass 5 is
bigger than or equal to 3078.667, then the torque ratio of pass 5 will be in the range [0.65,1],
which is a slip range. The second rule indicates that if the torque value measured from the
motors of mill for pass 5 is bigger than or equal to 2585.333, and the force value measured
from the motors of mill for pass 5 is smaller than or equal to 23046.67, then the torque ratio
of pass 5 will be in the slip range [0.65,1]. From these two rules we may conclude that when
torque measured from the motors of mill is too high, and sometimes when the force measured
from the motors of mill is too low, a slip may occurs.

Our job is to summarize the results and let the experts to inspect the results. We need

feedbacks from the experts to improve the experiments.
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Consider the rules provided above, the torque value measured from the motors of mill
for pass 5 attribute appears twice, and the force value measured from the motors of mill for
pass 5 appears once. The more frequent an attribute appears in the rules, the more important
the attribute is, especially when we built plenty of rules.

From all rule sets we discover one same phenomenon that the torque measured from the
motors of mill when biting in a slab is the most frequent attribute for passes 3, 4, and 5. The
rolling speed measured from the motors of mill is the second most frequent attribute for
passes 3, 4, and 5.

We also discover that some attributes never appear in any rule. This discovery may help
the experts to reduce dimensions when building a predictor.

The third most frequent attribute for passes 3 and 4 is the rolling speed of the top
working roll, which is preferred by JRip and J48, and the third most frequent attribute for
passes 5 is the bottom working roll number, which is preferred by ROUSER and never chosen
by JRip and J48. Both of these results are considered reasonable to experts. We discovered
that JRip and J48 prefer real number attributes and they may overlook some important
nominal attributes.

From the results we find that the default settings of running speed, threading speed,
force, and torque, are involved, while the thickness draft of each pass are not involved. We
look into the data to seek out the evidence of this discovery. First, we find that thickness draft
of each pass differs only a little in each data record, which may be the reason of why the
thickness is not involved. Second, we find that different records with exactly the same slab
properties (such as family) and the same size of finished products may have different settings
on the mill, and some setting combinations are rare with regard to the other records with the

same slab properties, and these rare settings are usually accompanied with slip. We considered
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this phenomenon as one of the causes of slip.
6.4 Summary
Through data mining techniques we narrow the exploring range of the problem
happened in a rough mill. The attributes chosen by our experiments are considered reasonable,
and we find that JRip and J48 are good at capturing important real number attributes, while
ROUSER is good at capturing the important nominal attributes. The results also respond to
the experts’ doubts about the default settings. Following the narrowed clues, we look into the

data and find some evidences to explain that the default settings may be one cause of slip.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

A rule-based classification algorithm named ROUSER is proposed. It is designed to
process nominal data and generate human understandable decision rules. ROUSER uses a
rough set approach as its search heuristic, and the rule generation method of ROUSER is
based on the separate-and-conquer strategy.

As a prototype without the optimization stage or the pruning stage to reduce errors,
ROUSER still provides classification performance comparable to or even better than that
given by the rule-based or tree-based classification algorithms considered in experiments.
Since the search heuristics of ROUSER is totally different from the search heuristics (Entropy
and Information Gain) used by the other three algorithms, the results imply that the proposed
PotBound and DiscPow are useful. This also shows the potential of ROUSER and gives an
example of future work.

For future work, we plan to conduct more experiments, develop better strategies to
select attributes and handle contradictions, and apply ROUSER to data sets obtained from a

real-world case study.
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