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Abstract 

 

In this thesis, we propose a rule-based classification algorithm named 

ROUSER (ROUgh SEt Rule), which uses the rough set theory as the basis of the 

search heuristics in the process of rule generation. We implement ROUSER 

using a well developed and widely used toolkit, evaluate it using several public 

data sets, and examine its applicability using a real-world case study. 

The origin of the problem addressed in this thesis can be traced back to a 

real-world problem where the goal is to determine whether a data record 

collected from a sensor corresponds to a machine fault. In order to assist in the 

root cause analysis of the machine faults, we design and implement a rule-based 

classification algorithm that can generate models consisting of human 

understandable decision rules to connect symptoms to the cause. Moreover, 

there are contradictions in data. For example, two data records collected at 

different time points are similar, or the same (except their timestamps), while 

one is corresponding to a machine fault but not the other. The challenge is to 

analyze data with contradictions. We use the rough set theory to overcome the 

challenge, since it is able to process imperfect knowledge.  

Researchers have proposed various classification algorithms and 

practitioners have applied them to various application domains, while most of 

the classification algorithms are designed without a focus on interpretability or 

understandability of the models built using the algorithms. ROUSER is 

specifically designed to extract human understandable decision rules from 
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nominal data. What distinguishes ROUSER from most, if not all, other 

rule-based classification algorithms is that it utilizes a rough set approach to 

select features. ROUSER also provides several ways to decide an appropriate 

attribute-value pair for the antecedents of a rule. Moreover, the rule generation 

method of ROUSER is based on the separate-and-conquer strategy, and hence it 

is more efficient than the indiscernibility matrix method that is widely adopted 

in the classification algorithms based on the rough set theory.  

We conduct extensive experiments to evaluate the capability of ROUSER. 

On about half of the nominal data sets considered in experiments, ROUSER can 

achieve comparable or better accuracy than do classification algorithms that are 

able to generate decision rules or trees. On some of the discretized data sets, 

ROUSER can achieve comparable or better accuracy. We also present the results 

of the experiments on the embedded feature selection method and several ways 

to decide an appropriate attribute-value pair for the antecedents of a rule. 

 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

iii 

 

摘要 

 

在本論文中，我們提出了一個以規則為基礎的分類演算法，名為

ROUSER（ROUgh SEt Rule），它利用粗糙集理論作為搜尋啟發的基礎，進

而建立規則。我們使用一個已經被廣泛利用的工具實作 ROUSER，也使用

數個公開資料集對它進行實驗，並將它應用於真實世界的案例。 

本論文的初衷可被追溯到一個真實世界的案例，而此案例的目標是從

感應器所蒐集的資料中找出與機械故障之間的關聯。為了能支援機械故障

的根本原因分析，我們設計並實作了一個以規則為基礎的分類演算法，它

所產生的模型是由人類可理解的決策規則所組成，而故障的徵兆與原因則

被決策規則所連結。此外，資料中存在著矛盾。舉例而言，不同時間點所

蒐集的兩筆紀錄極為相似、甚至相同（除了時間戳記），但其中一筆紀錄與

機械故障相關，另一筆則否。本案例的挑戰在於分析矛盾的資料。我們使

用粗糙集理論克服這個難題，因為它可以處理不完美知識。 

研究者們已經提出了各種不同的分類演算法，而實踐者們則已經將它

們應用於各種領域，然而多數分類演算法的設計並不強調演算法所產生模

型的可解釋性與可理解性。ROUSER 的設計是專門從名目資料中萃取人類

可理解的決策規則。而 ROUSER 與其它多數規則分類演算法不同的地方是
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利用粗糙集方法選取特徵。ROUSER 也提供了數種方式來選擇合宜的屬性

與值配對，作為規則的前項。此外，ROUSER 的規則產生方法是基於

separate-and-conquer 策略，因此比其它基於粗糙集的分類演算法所廣泛採用

的不可分辨矩陣方法還有效率。 

我們進行延伸實驗來驗證 ROUSER 的能力。對於名目資料的實驗裡，

ROUSER 在半數的結果中的準確率可匹敵、甚至勝過其他以規則為基礎的

分類演算法以及決策樹分類演算法。ROUSER 也可以在一些離散化的資料

集之中達到可匹敵甚至超越的準確率。我們也提供了內建的特徵萃取方法

與其它方法的比較的實驗結果，以及數種用來決定規則前項的方法的實驗

結果。 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Classification Problem 

In machine learning, a classification task is to classify an unknown data record into a 

pre-specified category based on values of attributes of the data record. Before the machine is 

capable to do the classification task, it needs to learn from some training data where each data 

record has been associated with a category. Each attribute of a given data set corresponds to a 

domain of continuous values, i.e. real numbers, or a domain of discrete values, i.e. nominal 

data.  

The proposed classification algorithm is specialized to nominal data. Nominal data is 

common in banking. Most of a customer’s personal information, such as gender, marital status, 

hobbits, and hometown, are nominal data. Banks would like to have rules to utilize a customer’s 

personal information in calculating his or her credit score. In addition, biologists are familiar 

with nominal data. Gene data is all nominal, and biologists want to study the relationships 

between gene combinations and a certain disease. Furthermore, although data from sensors is 

usually real numbers, engineers often need to discretize them into nominal data for further 

processing.  

To monitor a machine and check if it is stable or not, for example, engineers may want to 

use data of real numbers from sensors in the machine to train a classification model, or a 

classifier, in which the underlying classification algorithm is based on complex mathematical 
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methods. Examples of such classification algorithms include Support Vector Machines (SVMs) 

[4] or Artificial Neural Networks (ANNs) [2]. Engineers may obtain high accuracy from the 

trained classification models but learn little from them. Engineers need to know the possible 

causes of a fault or a problem in order to perform fault diagnosis and resolve the problem, but 

they will have difficulty in identifying the possible causes from complex mathematical 

expressions given by SVMs or ANNs. 

The goal of the classification algorithm in this thesis is to extract human understandable 

decision rules from nominal data. A decision rule is a function mapping a data space (a space of 

data records) to a class space (a space of categories or class labels). A human understandable 

decision rule is helpful for domain experts, such as engineers in the above example, to learn the 

causes and effects from data, and it is also important for scientists who intend to acquire 

knowledge from data.  

 

1.2 Tree-Based and Rule-Based Classification Algorithms 

Decision tree learning is one of the most widely used and practical methods for 

inductive inference [13], and a model learned by the method is a discrete-valued function, 

which can be represented by a decision tree. A classification algorithm which adapts decision 

tree learning method is called a tree-based classification algorithm. 

Unlike the tree-based algorithms, the hypotheses learned by a rule-based classification 

algorithm are sets of if-then rules, which is the most expressive and human-understandable. 

One way to learn a set of rules is re-representing a learned decision tree by a set of 

mutual-exclusive rules, one rule for one path from the root to the leaf in the tree. Another 

widely used method for rule learning is separate-and-conquer (sequential covering). 

First-order rules are rules with variables, and they are more powerful in representation than 
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decision tree or propositional rules in some special cases. However in this thesis we focus on 

learning propositional rules.  

Researchers have proposed several classification algorithms with the ability of rule 

generation. Rule-based classification algorithms like RIPPER (Repeated Incremental Pruning 

to Produce Error Reduction) [3] can generate rules directly, while tree-based classification 

algorithms like ID3 [17] and C4.5 [18] can also generate rules after transformation. C4.5 is one 

of the most popular classification algorithms [21], while RIPPER represents the state-of-the-art 

rule-based classification algorithms [10] [11]. What makes the classification algorithm 

proposed in this thesis different from the rule-based and tree-based classification algorithms is 

that it decides an attribute-value pair for the antecedents of a rule according to the rough set 

theory. 

 

1.3 Rough Set Based Classification Algorithms 

Rough set theory is a mathematical tool to describe imprecise knowledge. The most 

successful application of rough set is feature selection. Based on the features selected by 

rough set approach, researchers attempt to develop classification algorithms. Indiscernibility 

matrix [14] is widely adapted by these researchers to generate rules from data. In most 

classification algorithms that are based on the rough set theory, the indiscernibility matrix is 

used to generate all possible reducts (each of which is a subset of attributes) in nominal data 

and then generate rules from reducts. However, the computational cost of the indiscernibility 

matrix is high. There exist speed-up methods, but most of them are still based on the 

indiscernibility matrix [1][5]. The classification algorithm proposed in this thesis adopts the 

separate-and-conquer strategy [7] rather than the indiscernibility matrix, for rule generation. 
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1.4 Data Mining 

Data mining is relatively a young field in computer science, and the goal is to capture 

knowledge from data in human-understandable structure for further use [24]. To achieve this 

goal, different disciplines like artificial intelligence, machine learning, statistics, and database 

systems are fused together.   

In a practical application of data mining, some customizations are required to fit a 

client’s need. Although the goal of data mining is to capture human-understandable 

knowledge, sometimes the discovered knowledge is still too hard for clients to understand. In 

order to bridge the gap between the client and engineers, we follow a cooperative data 

analysis method. Here we introduce how we implement data mining techniques in cooperative 

data analysis. In Figure 1, the User is the client or the person who has the need of data 

analysis, and the Miner is the one who analysis the data. When User hands the data to Miner 

and introduces the background, the cooperation has begun. First the Miner enters the stage of 

improvement, understanding the user’s need, being familiar with the data, making clear the 

way to settle the problem, and seeking out the suitable algorithms. After that, the Miner enters 

the stage of model building. At this stage, Miner preprocesses the data, and builds models 

from the data. Followed by the stage of building rules, Miner summarizes results from the 

models and makes them understandable to user. The cycle of the cooperation now turns to the 

user’s side, and enters the stage of results inspecting. The user must spend time to inspect the 

results and judge them by professional knowledge. We hope that no matter the results coming 

from miner is useful or not, User can make some feedback to Miner, since User is the one 

who is mostly sensitive to the case and is professional to the background knowledge. This is 

the stage of feedback. Receiving the feedback from the User, Miner can think and improve the 

analysis methods, and make the cooperative analysis a positive cycle. 
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Figure 1. Cooperative data analysis. 

 

1.5 Thesis Organization 

The rest of this thesis is organized in the following way: Chapter 2 will give the 

preliminaries, and the proposed classification algorithm will be introduced in Chapter 3. 

Chapter 4 will be the implementation of the proposed algorithm. The experimental results are 

presented in Chapter 5. A case study is given in Chapter 6. The thesis will be concluded in 

Chapter 7 with potential directions for future work. 
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CHAPTER 2 

PRELIMINARY 

 

2.1 Rule-Based Classification Algorithms 

2.1.1 The Basics 

Rule induction is to learn rules from the given training data, and a rule-based 

classification algorithm uses the learned rules to classify unseen data records. For classification, 

a decision rule is a logic statement with the following form: 

condition1 ∧ condition2 ∧…→class 

where a condition is usually an attribute-value pair, indicating a certain value of certain 

attribute that is required to trigger the condition. 

If a training data record matches all conditions of the rule, we say that the rule covers 

the data record; if the rule covers a data record and classify the data record to the right class, 

we say that the rule explains the data record. Given a rule set R, for every possible data 

record, if there exists a rule which is able to cover the record, we say that the set of rules are 

exhaustive. If no two rules in R cover the same data record, we say that the rule set is 

mutually exclusive. If the rule set is not mutually exclusive, a data record can be covered by 

several rules and lead to contradicting results. Generally there are two approaches to 

overcome this problem: Ordered rules and unordered rules. Ordered rules rank the rules by a 

certain criteria (e.g. accuracy, coverage, description length), so only one rule will be chosen to 

classify a data record. Unordered rules allow multiple rules to be triggered to classify a single 
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data record through voting or weighting methods. 

RIPPER [3] is a popular rule-based classification algorithm. It has two stages: The 

generation stage and the optimization stage. The classification algorithm proposed in this 

thesis competes with it in the generation stage. 

2.1.2 Separate-and-Conquer 

The separate-and-conquer strategy, or sequential covering, first builds a rule that 

explains a part of the training data, separates them, and conquers the rest recursively until no 

data remains. It ensures that every data record is at least covered by one rule. Figure 2 gives the 

separate-and-conquer algorithm, the core of the proposed classification algorithm in this thesis. 

Before the algorithm begins, one of the classes is chosen. POSITIVE chooses the data that 

should be classified to the chosen class, and NEGATIVE chooses the others. Every rule is 

empty in the beginning, and continues to grow until no negative data is covered by it. 

Figure 2. The SEPERATE&CONQUER algorithm. 

2.1.3 Search Heuristics 

Search heuristics are used to evaluate the found hypotheses. The GROW function in the 

 Class = CHOOSE(ClassSet)  

 SEPERATE&CONQUER(Class,TrainData):  

RuleSet =∅  

while POSITIVE(TrainData)≠∅  

Rule=[null→Class]  

Covered=COVER(TrainData,Rule)  

while NEGATIVE(Covered)≠∅  

GROW(Rule,Covered) 

Covered= COVER(Covered ,Rule)  

RuleSet=RuleSet ∪{Rule}  

TrainData=TrainData \ Covered 

return RuleSet 
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separate-and-conquer algorithm given in Figure 2 searches from the covered data a suitable 

attribute and the corresponding value in order to grow a rule. Examples of search heuristics 

include Entropy and used in ID3 [17] and C4.5 [18]. 

Entropy 

Entropy is the weighted average of information content of each class and originates from 

the ID3 decision tree learning system [7]. Given a set S, the Entropy of the set S is defined as: 

𝐸(𝑆) =  − ∑ 𝑃𝑟(𝑗)𝑙𝑜𝑔2𝑃𝑟 (𝑗)

𝑁

𝑗=1

 

where N is the number of different values of an attribute in S, and 𝑃𝑟(𝑗) is the proportion of the 

value j in the set S. 

The definition of Entropy above is suitable for decision trees. To be suitable for a 

rule-based classification algorithm, the Entropy can be defined as: 

𝐸(𝑆) =  −
𝑝

𝑝 + 𝑛
𝑙𝑜𝑔2

𝑝

𝑝 + 𝑛
−

𝑛

𝑝 + 𝑛
𝑙𝑜𝑔2

𝑛

𝑝 + 𝑛
 

where p is the number of positive instances covered by a given rule r, and n is the number of 

positive instances covered by the given rule r. It is obvious that this definition is a special 

binary case of the original definition. 

Information Gain 

Information Gain measures the expected reduction in Entropy caused by partitioning the 

instances according to an attribute [13]. The definition of Information Gain is: 

𝐼𝐺(𝑆, 𝑎) = 𝐸(𝑆) −  ∑
|𝑆𝑣|

|𝑆|
𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝑎)

𝐸(𝑆𝑣) 

where 𝑎 is the attribute, and 𝑆𝑣 is the subset of 𝑆 for which attribute 𝑎 has value 𝑣.  
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2.1.4 Pruning and Optimization 

We believe that a generated rule might be overfitting, which means that a rule is grown 

too precisely to achieve high accuracy, while few data records are explained by this strict rule. 

To avoid overfitting, pruning methods were introduced to shorten the rule. In general there are 

two categories of pruning methods: Pre-pruning and post-pruning. Pre-pruning methods stop 

the growing of the rule by implementing some stopping criteria, such as Purity, Minimum 

Description Length, significance, etc. Post-pruning methods drop part of the conditions from a 

grown rule by testing if the pruned rule performs better than the original rule on some criteria or 

not. Currently the proposed ROUSER adapts no pruning methods, while implementing a 

pruning method suitable for ROUSER will be part of the future work. 

Rules generated through pruning stage are usually perform well, and experiments show 

that the whole rule sets are significantly improved on both the size and the performance 

through global optimization, which is a post-induction optimization method on the whole 

rule set. Currently ROUSER adapts no optimization methods, while investigating an 

optimization method suitable for ROUSER will be part of future work. 

 

2.2 The Rough Set Theory 

The rough set theory is first introduced by Zdzisław I. Pawlak in 1982 as a mathematical 

tool to characterize imprecise knowledge [15][16]. The main difference between a rough set 

and a classic set is the appearance of a boundary “region” (not just a boundary), where the 

uncertain elements exist, in a rough set. The fuzzy set theory [22] is another tool to characterize 

imprecise knowledge. The main difference between a fuzzy set and a rough set is that a fuzzy 

set needs a predefined function to decide the “membership degree” of each element. . 

Practically speaking, such a membership function is defined under some assumptions and on a 
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case-by-case basis. Nevertheless, a rough set needs no membership function, since the 

uncertain elements are located in the boundary region in a rough set. 

 

2.2.1 Information System and Decision Table 

An information system 𝑨 is a pair, denoted by 𝑨 = (𝑈, 𝐶), where 𝑈 is the universe, and 

𝐶 is the set of attributes. When we deal with classification or clustering issues, the elements of 

𝑈 can be considered as instances. For each attribute 𝑎 ∈ 𝐶, the value set is 𝑉𝑎 . For each 

instance 𝑥 ∈ 𝑈, it contains |𝐶| attribute values, and the value of attribute 𝑎 in instance 𝑥 is 

denoted by 𝑎(𝑥) . The information system 𝑨 = (𝑈, 𝐶)  in Table I below, 

  𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8},  𝐶 = {𝑎1, 𝑎2}, 𝑉𝑎1 = {1, 2,3,4}, 𝑉𝑎2 = {1, 2,3,4}. 

 

Table I. Information system A=(U,C) 

U a1 a2 

x1 1 2 

x2 2 1 

x3 2 2 

x4 3 2 

x5 3 2 

x6 3 3 

x7 3 4 

x8 4 3 

 

A Decision Table [S15] is a special case of an information system with the form 

𝑨 = (𝑈, 𝐶 ∪ 𝐷), where 𝑑 ∈ 𝐷 is a decision attribute, called decision, and 𝑑 ∉ 𝐶, while each 

𝑎 ∈ 𝐶 is called condition. The value set of 𝑑 is 𝑉𝑑. 𝑑 is also the class in a classification 

problem. The value of decision 𝑑 in instance 𝑥 is denoted by 𝑑(𝑥).For example, the decision 

table 𝑨 = (𝑈, 𝐶 ∪ 𝐷)  in Table II below, 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8} ,  𝐶 = {𝑎1, 𝑎2} , 
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 𝐷 = {𝑑}, 𝑉𝑎1 = {1, 2,3,4}, 𝑉𝑎2 = {1, 2,3,4} and 𝑑 = {𝑦, 𝑛}, 𝑑(𝑥1) = 𝑦, 𝑑(𝑥5) = 𝑛.  

 

Table II . Decision table A=(U,C∪D) 

U a1 a2 d 

x1 1 2 y 

x2 2 1 y 

x3 2 2 y 

x4 3 2 y 

x5 3 2 n 

x6 3 3 n 

x7 3 4 n 

x8 4 3 n 

 

2.2.2 Indiscernibility Relation 

Indiscernibility relation is an equivalence relation mathematically, but the meaning is 

different. When we say that two objects are indiscernible, we mean that the two objects have 

exact the same value on every attribute and hence we cannot distinguish the two objects. 

However, we still cannot say that the two objects are the same, due to the limit of knowledge 

(attributes). A formal definition of indiscernibility relation is given below. 

For every instance 𝑥, 𝑦 ∈ 𝑈 , 𝑥, 𝑦  are indecernable if and only if for every 𝑎 ∈ 𝐶 , 

𝑎(𝑥) = 𝑎(𝑦). For each subset 𝐶′ ⊆ 𝐶 , 𝐶′ makes a partition on 𝑈, denoted by 𝑈/𝐶′, and 

𝐶′(𝑥) ∈ 𝑈/𝐶′ denotes the block of the partition containing instance 𝑥, which means 𝑥 ∈ 𝐶′(𝑥). 

For each 𝑦 ∈ 𝐶′(𝑥), 𝑎(𝑦) = 𝑎(𝑥), which means that instances in the same block of partition 

are indiscernible. 𝐶′ forms an indiscernibility relation and 𝐼(𝐶′) defines as follows: 

𝑥 𝐼(𝐶′) 𝑦  if and only if  𝑎(𝑥) = 𝑎(𝑦) for every 𝑎 ∈ 𝐶′. 

For example, consider the decision table in Table II above. All partitions are given below: 

𝑈/𝐷 = {{𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥5, 𝑥6, 𝑥7, 𝑥8}}, 
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𝑈/𝐶 = {{𝑥1}, {𝑥2}, {𝑥3}, {𝑥4, 𝑥5}, {𝑥6}, {𝑥7}, {𝑥8}}, 

𝑈/{𝑎1} = {{𝑥1}, {𝑥2, 𝑥3}, {𝑥4, 𝑥5, 𝑥6, 𝑥7}, {𝑥8}}, 

𝑈/{𝑎2} = {{𝑥2}, { 𝑥1, 𝑥3, 𝑥4, 𝑥5}, {𝑥6, 𝑥8}, {𝑥7}}. 

 

2.2.3 Rough Set 

The main difference between a rough set and a classic set is the appearance of a boundary 

“region” (not just a boundary), as shown in Figure 3 (a), (b). Given a decision table A=(U,C∪

D), as shown in Table II, where U={x1,x2,x3,x4,x5,x6,x7,x8} is the universe or the training data, 

C={a1,a2} is the condition or the attribute set of the training data, and D={d} is the decision or 

the set of class labels of the training data. A rough set of d=y is shown in Figure 3 (c). Since 

there is no difference between the condition of x4 and that of x5, they are in the boundary region. 

The visualized rough set of 𝑨 = (𝑈, 𝐶 ∪ 𝐷) is shown in Figure 3 (c). 

 

Figure 3. (a) Classic set. (b) Rough set. (c) Rough set for example. 

We give an example to help understand a rough set. The set Y corresponding to the set of 

d = y is {𝑥1, 𝑥2, 𝑥3, 𝑥4}, as shown in Figure 4 (a), where the set is mapped to a 4x4 data space 

of 𝐶 = {𝑎1, 𝑎2}. If we want to define Y precisely through 𝐶, we find that elements 𝑥4 and 𝑥5 

are indiscernible on 𝐶, or 𝑥4  𝐼(𝐶) 𝑥5, since both of them satisfy 𝑎1 = 3 𝑎𝑛𝑑 𝑎2 = 2, and 

hence Y cannot be defined precisely through the known attributes. It is easy to see that 

𝑥1, 𝑥2, 𝑥3 are certain to belong to Y. We are not sure if 𝑥4, 𝑥5 belong to Y or not, but we are sure 

Out of the set 

In the set 

Out of the set 

boundary 

In the set 

x
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, x

7
, x
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that 𝑥6, 𝑥7, 𝑥8 do not belong to Y. Hence we can characterize the set Y by two crisp set, 

{𝑥1, 𝑥2, 𝑥3} 𝑎𝑛𝑑 {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, the lower-approximation and upper-approximation of Y, 

respectively, as shown in Figure 4 (b) and (c). This example gives a sense to a rough set: A 

rough set is actually a combination of several traditional sets (crisp sets).  

 

 
   (a)      (b)     (c) 

Figure 4. (a) The space of d=y. (b) The lower-approximation of d=y. (c) The upper-approximation of d=y. 

 

Here we give a formal definition to a rough set. Consider a decision table 𝑨 = (𝑈, 𝐶 ∪

𝐷) , where 𝐷  forms a partition 𝑈/𝐷  and indiscernibility relation 𝐼(𝐷) . For each subset 

𝐶′ ⊆ 𝐶, 𝐶′ forms a partition 𝑈/𝐶′  and indiscernibility relation 𝐼(𝐶′). When dealing with a 

classification problem, 𝐼(𝐷) must be approximated by 𝐼(𝐶′). For each block of partition 

𝑋 ∈ 𝑈/𝐷, the 𝐶′-lower approximation of 𝑋 is as follows: 

𝐶′(𝑋)  =  {𝑥 ∈  𝑈 ∶  𝐶′(𝑥)  ⊆  𝑋} 

The 𝐶′-upper approximation of 𝑋 is as follows: 

𝐶′(𝑋)  =  {𝑥 ∈  𝑈 ∶  𝐶′(𝑥)  ∩  𝑋 ≠  ∅} 

If 𝐶′(𝑋) = 𝐶′(𝑋), we say that 𝑋 is 𝐶′-definable. The rough set theory defines the set 𝑋 by 

both 𝐶′(𝑋) and 𝐶′(𝑋). If 𝑋 is 𝐶′-definable, we say 𝑋 is crisp, otherwise 𝑋 is rough. 
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The positive region of the partition 𝑈/𝐷  with respect to 𝐶′  is expressed as 

𝑃𝑂𝑆𝐶′(𝐷), which is a union of every block’s lower-approximation of the partition 𝑈/𝐷. The 

definition is given below: 

𝑃𝑂𝑆𝐶(𝐷) =  ⋃ 𝐶′(𝑋)

𝑋∈𝑈/𝐷

 

There are no contradicting data records in 𝑃𝑂𝑆𝐶′(𝐷). An example of a positive region is given 

in Figure 5. 

    

      (a)       (b)      

Figure 5. (a) The data space. (b) The positive region of U/D . 

 

The dependency degree of 𝐷 respect to 𝐶′ is defined below: 

𝛾𝐶′(𝐷) =
𝑐𝑎𝑟𝑑(𝑃𝑂𝑆𝐶′(𝐷))

𝑐𝑎𝑟𝑑(𝑈)
 

If 𝛾𝐶′(𝐷) =1 we said that 𝑨 is consistent on 𝐶′, which means that there are no contradicting 

data records. 

 

2.2.4 Reduct and Core 

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), an attribute 𝑎 ∈ 𝐶 is said to be dispensable if 

𝛾𝐶−{𝑎}(𝐷) = 𝛾𝐶(𝐷). A subset 𝐶′ ⊆ 𝐶  is a reduct of 𝐶  with respect to 𝐷  if no attribute 

𝑎 ∈ 𝐶′ is dispensible. There can be more than one reduct of 𝐶, and the set of reducts is denoted 

by 𝑅𝑒𝑑𝐶(𝐷). The core of 𝐶 with respect to 𝐷 is defined as below: 
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 𝐶𝑜𝑟𝑒𝐶(𝐷) = ⋂ 𝑅

𝑅 ∈ 𝑅𝑒𝑑𝐶(𝐷)

 

Consider the new example in Figure 6, where a new attribute 𝑎3 is given, and two 

partitions are shown as follow: 

𝑈/{𝑎1, 𝑎3} = {{𝑥1}, {𝑥2, 𝑥3}, {𝑥4}, {𝑥5}, {𝑥6, 𝑥7}, {𝑥8}} 

𝑈/{𝑎2, 𝑎3} = {{𝑥2}, { 𝑥1, 𝑥3}, {𝑥4}, {𝑥5}, {𝑥6, 𝑥8}, {𝑥7}} 

It is easy to understand that both {𝑎1, 𝑎3} and {𝑎2, 𝑎3} are reducts of the new decision 

table, and {𝑎3} = {𝑎1, 𝑎3} ∩ {𝑎2, 𝑎3} is the core. Graphs for visualization are given in Figure 7  

and Figure 8. 

 

 
(a) 

 
        (b)       (c)      (d) 

Figure 6. (a) The new decision table with a3. (b) Data space of a3=1 . (c) Data space of a3=2. (d) Data space of 

a3=3. 
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Figure 7. a1, a3 as the reduct. 

 
Figure 8. a2, a3 as the reduct. 
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2.2.5 Indiscernibility Matrix 

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), a discernibility matrix 𝑀𝐷(𝐶) of 𝑨 is a 𝑛 × 𝑛 

matrix, and the entry of the matrix is defined as follows:  

𝑐𝑖𝑗  =  {𝑎 ∈  𝐶 ∶  𝑎(𝑥𝑖)  ≠  𝑎(𝑥𝑗)  ∧  d(𝑥𝑖) ≠ 𝑑(𝑥𝑗)} 𝑓𝑜𝑟 𝑖, 𝑗 =  1, 2, . . . , 𝑛. 

where 𝑛 is the number of elements in 𝑈 and 𝑥𝑖 , 𝑥𝑗 ∈  𝑈. 

Discernibility function 𝑓𝐷(𝑨) is defined as follows:  

𝑓𝐷(𝐶)  =  ⋀{⋁ 𝑎 : 𝑎 ∈  𝑐𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑐𝑖𝑗 ≠ ∅} 

A discernibility function 𝑓𝐷(𝐴) is a boolean function, all constituents in the disjunctive 

normal form of 𝑓𝐷(𝐶) are all 𝐷-reducts of 𝐶, and all prime implecants of the conjunctive 

normal form of 𝑓𝐷(𝐶) are also all 𝐷-reducts of 𝐶. 

An indiscernibility matrix of decision table in Figure 6 (a) is given in Figure 9 below. 

 

 

Figure 9. An example of indiscernibility matrix. 
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CHAPTER 3 

DESIGN OF THE PROPOSED METHOD 

 

3.1 Potential Boundary Region and Discernibility Power 

One of the contributions of this thesis is presenting a new search heuristics named 

discernibility power based on the rough set theory. Before introducing discernibility power, 

we have to redefine the rough set for disambiguation and convenience. 

Redefining a Rough Set 

Guided by the original definition of rough set theory, we redefine a rough set. Given a 

decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), for each block X of partition 𝑈/𝐷, the rough set of X is 

redefined below: 

The positive region of X: 

POSA (X) = {xC(x) X}. 

The negative region of X:  

NEGA (X) = {x | C(x) ∩ X=∅}. 

The boundary region of X: 

BOUNDA (X) = X  POSA (X)  NEGA (X). 

Notice that the positive region here is the same as the definition of the lower-approximation of a 

rough set, but it differs from the one mentioned in 2.2.3, which is the positive region of 𝐷 

respect to 𝐶. As sketched in Figure 10, a rough set is redefined by 3 disjunctive traditional sets, 

positive region, negative region and boundary region. The redefined rough set is also a 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

19 

 

partition of 𝑼. The purpose of the redefinition is to connect the rough set theory with the 

separate-and-conquer algorithm, which iteratively grows a rule by rejecting as many negative 

data records as possible and accepting as many positive data records as possible. Based on the 

redefinition of a rough set, we introduce two concepts: Potential boundary region (PotBound) 

and discernibility power (DiscPow). 

 

 
Figure 10. The redefined rough set. 

 

Potential Boundary Region 

Consider the rough set of 𝑋 defined above, the meaning of the potential boundary 

region of attribute ai is the set of elements which will become indiscernible without ai. The 

definition of PotBound of X with respect to attribute ai is given below: 

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) = 𝐵𝑜𝑢𝑛𝑑𝑨′(𝑋) − 𝐵𝑜𝑢𝑛𝑑𝑨(𝑋), 

where 𝑨 = (𝑈, 𝐶 ∪ 𝐷)  and  𝑨′ = (𝑈, 𝐶 ∪ 𝐷 − {𝑎𝑖}). 

Here is an example of PotBound. Consider sdfsff, the original decision table is 𝑨 =

(𝑈, 𝐶 ∪ 𝐷), if the attribute a2 is removed, the new decision table becomes 𝑨′ = (𝑈, 𝐶 ∪ 𝐷 −

{𝑎𝑖}).  x6, x7 become indiscernible, and the boundary region of Y expands. The expanded part 

of the boundary region {x6, x7} is the PotBound of a2.  

negative 

boundary 

positive 
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Figure 11. (a) Decision table A' = (U,C∪D {a2}). (b) The new rough set of d=y.  

Discernibility Power 

The meaning of DiscPow of attribute 𝑎𝑖  is how many elements will become 

indiscernible without 𝑎𝑖. The definition of DiscPow of 𝑎𝑖 with respect to the X is given 

below: 

𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) = 𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)). 

Reuse the example above, the DiscPow of 𝑎1 with respect to 𝑌 is 2, or 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑌, 𝑎1) = 

2. 

DiscPow has the monotonicity property, which means that removing elements from a 

rough set, or a partition of 𝑈, will never increase the DiscPow. Below is the proof. 

 

 

Figure 12. The rough set of A = (U,C∪D ). 

𝑁𝐸𝐺𝑨(𝑋) 

𝐵𝑂𝑈𝑁𝐷𝑨(𝑋) 

𝑃𝑂𝑆𝑨(𝑋) 

U a1 a2 d 

x1 1 2 y 

x2 2 1 y 

x3 2 2 y 

x4 3 2 y 

x5 3 2 n 

x6 3 3 n 

x7 3 4 n 

x8 4 3 n 

         (a)                    (b)  

x8 

 x4, x5, x6, x7 

 x1, x2, x3 

x6, x7, x8 

 
x4, x5 

 x1, x2, x3 
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Figure 13. The rough set of A' = (U,C∪D {a2}) 

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷) as shown in Figure 12, the DiscPow of 𝑎𝑖 ∈ 𝐶 

with respect to the rough set of 𝑋 ∈ 𝑈/𝐷 is as below: 

𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) = 𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)), 

and the 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) is given below: 

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) = 𝐵𝑜𝑢𝑛𝑑𝑨′(𝑋) − 𝐵𝑜𝑢𝑛𝑑𝑨(𝑋), 

where 𝑨′ = (𝑈, 𝐶 ∪ 𝐷 − {𝑎𝑖}), as shown in Figure 13. 

Below are definitions for 𝑋 with respect to 𝑨′: 

The positive region of 𝑋: 

𝑃𝑂𝑆𝑨′(𝑋) = {𝑥 | 𝐶(𝑥)  𝑋 } 

The negative region of 𝑋:  

𝑁𝐸𝐺𝑨′(𝑋) = {𝑥 | 𝐶(𝑥)  ∩  𝑋 = ∅ } 

The boundary region of 𝑋: 

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) = 𝑋 − 𝑃𝑂𝑆𝑨′(𝑋) −  𝑁𝐸𝐺𝑨′(𝑋)  

By the 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)  given above, the boundary region of 𝑋  has another 

definition: 

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) = 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) + 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋), 

𝑁𝐸𝐺𝑨′(𝑋) 

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) =  𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋) + 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)  

𝑃𝑂𝑆𝑨′(𝑋) 

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋,𝑎𝑖) 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋) 
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hence the rough set of 𝑋  is equal to { 𝑃𝑂𝑆𝑨′(𝑋) , 𝑁𝐸𝐺𝑨′(𝑋) , 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) , 

𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)}, which is a partition of 𝑈. This indicates that any element 𝑒 removed from 𝑈 

originally belongs to exactly one block of this partition. Since 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖)  = 

𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)) , the only way to modify the value of 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖)  is 

inserting or removing element from 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖). It is obvious that removing an 

element from 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to drop, and inserting an 

element into 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to rise. Removing more 

than one element from 𝑈 can be considered as iterally removing an element, and inserting 

more than one element from 𝑈 can be considered as iterally inserting an element. By all 

above, removing elements from 𝑈 will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to either hold or drop, 

and inserting elements to 𝑈 will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to either hold or rise, and this 

is the monotonicity property of DiscPow. 

Discernibility Power is one of the search heuristics of the proposed rule-based 

algorithm: ROUSER, which will be introduced in the next subsection. 

 

3.2 ROUSER 

ROUSER follows the separate-and-conquer algorithm as the framework. Our 

contribution here is connecting the proposed DiscPow as the search heuristic used by the 

GROW function in the separate-and-conquer algorithm. The GROW function of ROUSER is 

shown in Figure 14. ROUSER removes attributes whose values of DiscPow are zero in each 

iteration, and it updates DiscPow of every attribute until all values of DiscPow of the remaining 

attributes are not zero. If multiple attributes need to be removed, the current version of 

ROUSER simply removes the one that is independent of the class entered as a parameter to 

the separate-and-conquer algorithm in Figure 2. We use Chi-Squared value to decide the 
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degree of independence. Chi-Squared value was first used in feature selection in [9]. Feature 

selection with Chi-Square test together with rough set theory was proposed in [19].  

Figure 14. The GROW function. 

Once an attribute is removed in an iteration when the GROW function is running, we no 

longer need to compute its DiscPow value anymore because of the monotonicity property of 

DiscPow. When elements are removed from the rough set covered by current rule, the 

DiscPow value of an attribute will be the same or a smaller value. Once the DiscPow value of 

the attribute is zero, it will no longer increase and hence the attribute can be removed. The 

DISCPOW function is shown in Figure 15. 

Figure 15. The DISCPOW function. 

 

 DISCPOW(ai,Covered):  

decision table A=(U,C∪D) 

let C'  be C{ai} 

for every elements xi and xj, i < j 

if C' (xi ) = C'(xj) ∧ D(xi) ≠ D(xj) 

PotBound(ai ) = PotBound(ai )⋃{xi , xj} 

return the cardinality of PotBound(ai ) 

 GROW(Rule,Covered):  

do: 

for every attribute ai:  

DiscPowi = DISCPOW(ai,Covered)  

ChiSquaredi = CHISQUARED(ai ,Covered) 

Among attributes with DiscPowi =0, ignore ai with 

minimum ChiSquaredi  

while exist ai with DiscPowi = 0   

(a,v) = CHOOSE_ATTR&VALUE() 

grow the rule with (a,v)  as an antecedent 
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The CHOOSE_ATTR&VALUE function in GROW function searches for an 

attribute-value pair, i.e. (ai ,vi), that will be used to grow a rule. We use the idea of purity value 

[9][20] as the search heuristics. In our algorithm we provide 3 types of purities as options: 

PurityOverAll, PurityPotBound, and PurityHybrid. The first is the same as the original 

definition of purity, and the others are proposed by us. The definitions of these purities are 

given below: 

PurityOverAll = |pall|/(|pall|+|nall|), 

where pall is the positive records covered by the candidate attribute and value, and nall is the 

negative records covered by the candidate attribute and value;  

PurityPotBound = |ppb|/(|ppb|+|npb|), 

where ppb is the positive records in the potential boundary region of the candidate attribute, and 

ppb is covered by the candidate attribute and value, and npb is the negative records in the 

potential boundary region of the candidate attribute, and npb is covered by the candidate 

attribute and value; 

PurityHybrid = |ppb|/(|ppb|+|nall|), 

where ppb is the positive records in the potential boundary region of the candidate attribute, and 

ppb is covered by the candidate attribute and value; nall is the negative records covered by the 

candidate attribute and value. 

In addition to purity, we provide weighted Information Gain as an option for search 

heuristic, which is defined as: 

WInfoGain = (p2all/p1all)*( log(|p2all|/(|p2all|+|n2all|)) - log(|p1all|/(|p1all|+|n1all|)) ) 

where p1all and n1all is the positive and negative records respectively from the original set of 

data records, and p2all and n2all is the positive and negative records respectively from the 

chosen subset of data records. The “log(|p1all|/(|p1all|+|n1all|))” is the information content of the 
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original set of data records, while “log(|p2all|/(|p2all|+|n2all|))” is the information content of the 

chosen subset. “(p2all/p1all)” is the weight of the Information Gain. 

We also provide 2 methods, and the first is called “Max”, which finds the maximum (i.e. 

purity) from all possible attribute-value pairs. The second is called “Frequent Max”, which 

finds the most frequent value in each attribute and then finds the maximum (i.e. purity) from 

them.  

At last, our CHOOSE_ATTR&VALUE function can choose an attribute-value pair in 7 

different ways: 

1. PurityOverAll,   Max 

2. PurityPotBound,   Max 

3. PurityHybrid,  Max 

4. PurityOverAll,   Frequent Max 

5. PurityPotBound,   Frequent Max 

6. PurityHybrid,  Frequent Max 

7. WInfoGain,   Max 

ROUSER generates a set of rules for each class. As soon as a rule set is generated, it is 

concatenated to the bottom of the rule list. The BUILD_CLASSIFIER algorithm of ROUSER is 

shown in Figure 16. The class list is sorted by ascending frequency order as RIPPER does. For 

an unseen case, ROUSER searches down the rule list and uses the first rule that covers the case 

to classify it.  
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ROUSER has to decide if two records are indiscernible to determine the boundary and 

potential boundary regions. Consider the examples in Figure 17, where there are two records j 

and k. If we want to know if record j and record k are indiscernible, we have to check every 

attribute’s value. If each attribute has the same value in record j and k, we say that the two 

records are indiscernible. 

 

Figure 17. The example for checking if two records are indiscernible. 

 

It is a simple task to decide if two records are indiscernible or not. However, missing 

values make the task complicated. We define four types of indiscernibility between two values, 

as shown in Table III, Table IV, Table V, and Table VI. These tables show how we treat a 

missing value for an attribute when we try to check if two records are indiscernible. From 

type 1 to type 4, the determination of indiscernibility becomes stricter. Currently, ROUSER 

uses type 3 to find boundary region, and it uses type 1 to find potential boundary region. Part 

of our study in the future is to consider other types of indiscernibility. 

 BUILD_CLASSIFIER( ):  

build a ClassList by ascending frequency order 

for each Class in ClassList: 

RuleSet=SEPERATE&CONQUER(Class,TrainData)  

 concatenate the RuleSet to the bottom of the RuleList 

return RuleList 

Figure 16. The BUILD_CLASSIFIER function. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

27 

 

Table III. Type 1 indiscernibility. 

type 1 
vj 

missing α 

vk 

missing same same 

α same same 

β same diff 

 

Table IV. Type 2 indiscernibility. 

type 2 
vj 

missing α 

vk 

missing diff same 

α same same 

β same diff 

 

Table V. Type 3 indiscernibility. 

type 3 
vj 

missing α 

vk 

missing same diff 

α diff same 

β diff diff 

 

Table VI. Type 4 indiscernibility. 

type 4 
vj 

missing α 

vk 

missing diff diff 

α diff same 

β diff diff 

 

Records with same conditions and different decisions are considered as contradictions. 

Based on the four types of indiscernibility, there will be four types of contradictions. 

ROUSER simply ignores the contradictions (type 3) in the training data. 
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CHAPTER 4  

IMPLEMENTATION OF THE PROPOSED METHOD 

 

4.1 WEKA  

Weka[8] is an open source data mining software, which provides free Java code for 

machine learning task. Weka is developed by and updated by the University of Waikato in 

New Zealand. We use Weka 3.6.5 as our developing environment. 

 

4.1.1 Import Data 

Weka accepts several data formats, including the simplest format named 

Comma-Separated Values (CSV), and Attribute Relationship File Format (ARFF). After data is 

imported, it is stored by the Weka-defined data structures. Each data record is stored by an 

Instance object, and the whole data set is stored by an Instances object, which contains 

multiple Instance objects. An Attribute object contains all the details about an attribute, like 

the data type is nominal or real number, and how many values are in the attribute. Multiple 

Attribute objects are also contained in one Instances object. 

 

4.1.2 Classifier 

To develop a classifier under Weka’s environment, an abstract class 

weka.classifiers.Classifier() must be extended. After that, an abstract method 

buildClassifier() must be implemented, and this method is called every time when the 
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classifier is invoked. This method builds up the classification model by learning from the 

training data. After the model is built, one of the two methods is called for classifying testing 

data: classifyInstance() and distributionForInstance(), which utilize the model built by 

buildClassifier() to generate the classification result for every single data record. The 

difference between these two functions is that, the former one returns exact one class label for 

prediction, while the latter one returns an array of probabilities with respect to class labels.  

 

4.1.3 Cross-Validation 

Weka offers several evaluation methods, and they are easy to implement. Here we 

introduce how to realize a cross-validation method. First an evaluator must be built by 

invoking weka.classifiers.Evaluation(), and then we choose the provided method 

crossValidateModel(). 

 

4.2 Data Structure 

The data structure used in the implementation of ROUSER is partially learned from the 

JRip provided by Weka. 

4.2.1 Rough Set  

In order to implement rough set intuitively, a data structure for rough set is built, as in 

Figure 18. A data set is split as a partition of 3 blocks, namely positive, boundary and negative, 

with respect to the definition of a rough set in Section 3.4, and each block is actually an 

Instances object as mentioned in Section 4.1.1. For the convenience, the blocks filled by black 

color is empty, while white is not empty. Some necessary information is stored in the structure, 

such as DiscPow, Chi-square value, Purity For several further use, such as choosing the best 

attribute and value to build a rule. This data structure never appears in Weka.
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Figure 18. The data structure of a rough set. 

 

4.2.2 Decision Rule 

As mentioned in Section 2.1.1, a decision rule is a logic statement with the following 

form: 

condition1 ∧ condition2 ∧…→class, 

hence there can be multiple antecedents. We define a data structure named RAntd to store 

each condition, and some necessary information is contained in the structure,, such as the 

DiscPow, the number of instances covered by the rule so far (from the 1
st
 condition to this 

condition), and the number of instances explained by the rule so far, as shown in Figure 19. 

This data structure is learned from JRip provided by Weka, however some of the information 

stored in it are different. 

 

Figure 19. The data structure of the antecedent of a rule: RAntd. 

 

Another structure learned from JRip provided by Weka is RouserRule, which stores a 

rule, as in Figure 20, and it contains two parts: The queue of the antecedents and a class label. 
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When a rule is grown, RAntd is generated one after another, and they are stored in a queue in 

order. 

Figure 20. The data structure of a rule: RouserRule. 

 

After a rule is generated, it is stored in the rule set in the growing order, as shown in 

Figure 21. The rule set is a queue. This is also learned from JRip provided by Weka. 

 

Figure 21. A data structure of the rule set: m_Ruleset. 

 

The whole data structure of the rule model built by ROUSER is shown in Figure 22: 

 
Figure 22. The data structure of ROUSER’s rule model. 
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4.3 ROUSER 

Following the separate-and-conquer algorithm, ROUSER is implemented under the 

Weka environment. As mentioned in Section 4.1.1, the BuildClassifier() function must be 

implemented 

 

4.3.1 BuildClassifier( ) 

In the BuildClassifier() function shown in Figure 23, the oneClassRule() is an 

implement of the separate-and-conquer algorithm, which build rules for one chosen class. The 

oneClassRule() function is called for each class by ascending class order, since we adapt the 

ascending ordered rules strategy here, which is also adapted by RIPPER.  

 

Figure 23. The flow chart of BuildClassifier(). 

 

4.3.2 OneClassRule( ) 

The function OneClassRule() shown in Figure 24 is an implement of the 

separate-and-conquer algorithm. The training data is first transformed into a rough set of the 
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chosen class, which split the original data into three parts, and we make the boundary region 

empty to accelerate further processes. If there are contradicted instances in the data set, they 

will be in the boundary region, and there are many methods to handle the contradictions, such 

as assigning the most frequent class label to the contradicted instances. We choose t simple 

method: Deleting the instances in the boundary region. After that we build a rule from the 

rough set by the grow() function. The rule is concatenated at the end of the rule set right after 

it is built. After a rule is built, the positive instances explained by the rule are removed from 

the positive region. The remaining instances in the rough set will then be used to build another 

rule iteratively until all instances are explained.  

 

Figure 24. The flow chart of OneClassRule(). 
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4.3.3 grow( ) 

The grow() function shown in Figure 25 builds a rule that explains some of the positive 

instances and none of the negative instances in the rough set. At the beginning an empty rule is 

built. DiscPow and Chi-Squared value of each attribute are calculated, and the rule is enriched 

by the antecedents built by the bestAntd() function. The longer the rule grows, the fewer the 

negative instances are covered. The rule is finally done when none of the negative instances are 

covered by the rule.    

 

Figure 25. The flow chart of grow(). 
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4.3.4 BestAntd( ) 

BestAntd() chooses the best pair of attribute and value to grow the rule, and is the same as the 

CHOOSE_ATTR&VALUE() function in the pseudo code in grow() function in Figure 14.  
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CHAPTER 5 

EXPERIMENT AND RESULTS 

 

5.1 Environmental Setting 

The experiment is executed on a computer with Windows7 32bit operating system. The 

memory is 4GB DDR3 SDRAM 1333Mhz, and the chipset is Intel Q67 Express, the CPU is 

Intel Core i7 -2600, 3.4GHz. The Weka’s version is 3.6.5. 

 

5.2 Data Sets 

The data sets used for experiments are all available from UCI Machine Learning 

Repository [23], and the data sets which are originally nominal data are shown in Table VII, 

and the discretized data sets which originally contain some real number data are shown in 

Table VIII. They are collected from different application domains, such as biology, gaming, 

politics, and marketing; the number of their attributes ranges from 5 to 69; the number of their 

classes ranges from 2 to 24; since the class numbers are different in each data set, we use bar 

charts to visualize the class distributions, for some of them, the class distributions are 

imbalanced; and some data sets are with missing values on some attributes.  

The data set names with the “_dis” concatenated behind are not pure nominal data 

originally. We perform discretization on these data sets, and the details about what attributes are 

discretized and how they are discretized are shown in Table IX.  
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Table VII. Original nominal data sets. 

Data name #instances 
#attributes 

including class 
Class distribution 

missing 

value 

Agaricus-lepiota 8124 23 
 

yes 

Audiology.standardized 226 69 
 

yes 

Car 1728 6 
 

no 

House-votes-84 435 16 
 

yes 

Kr-vs-kp 3196 36 
 

no 

Nursery 12960 8 
 

no 

Promotors 106 58 
 

no 

Splice 3190 61 
 

no 

Tic-tac-toe 958 9 
 

no 

 

Table VIII. Discretized data sets. 

Data name #instances 
#attributes 

including class 
Class distribution 

missing 

value 

Abalone_dis 4177 9 
 

no 

Adult_dis 32561 15 
 

no 

Australian_dis 690 15 
 

no 

Balance-scale_dis 625 5 
 

no 

German_dis 1000 21 
 

no 

Hearts_dis 270 14 
 

no 
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Table IX. Details of discretization. 

Data name Supervised discretization 
Equal bean discretization 

(number of bean) 
Numerical to nominal 

Abalone 2,3,4,5,6,7,8 9(5)   

Adults 1,5,11,12,13 3(10)   

Australian 2,3,7,10,13,14   1,4,5,6,8,9,11,12,15 

Balance-scale     1,2,3,4 

German 2 5(10),13(10) 8,11,16,18,21 

Heart 8,10 1(5),4(5),5(5) 2,3,6,7,9,11,12,13,14 

We defined four types of contradictions in section 3.2, and the number of contradictions 

in each data set is shown in Table X and Table XI. 

Table X. Number of contradictions in original nominal data sets 

Data sets Number of instances 
Number of contradictions 

type 1 type2 type3 type4 

Agaricus-lepiota 8124 0 0 0 0 

Audiology.standardized 200 0 0 0 0 

Car 1728 0 0 0 0 

House-votes-84 435 293 149 0 0 

Kr-vs-kp 3196 0 0 0 0 

Nursery 12960 0 0 0 0 

Promoters 106 0 0 0 0 

Splice 3190 2 2 2 2 

Tic-tac-toe 958 0 0 0 0 

 

Table XI. Number of contradictions in discretized data sets. 

Data sets number of instances 
Number of contradictions 

type 1 type2 type3 type4 

Abalone_dis 4177 3190 3190 3190 3190 

Adult_dis 32561 4431 4431 4431 4431 

Australian_dis 690 29 29 29 29 

Balance-scale_dis 625 0 0 0 0 

German_dis 1000 0 0 0 0 

Hearts_dis 270 2 2 2 2 
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5.3 Results 

We design several experiments to examine ROUSER’s performance in different 

situations. We use 10-fold cross-validation to evaluate the classification performance.  

The results for the data sets which are original nominal are summarized in Table XII. 

The numbers reported in Table XII are accuracy rates in percentage, and the maximum values 

are in bold, and the minimum values are underlined. As we mentioned in section 3.2 that 

ROUSER has seven choices to search for the attribute-value pair to grow a rule, and the 

results of all the seven choices are shown in Table XII. Four out of nine accuracy results of 

ROUSER_6 are better than or the same as both J48 and JRip. On two data sets ROUSERs are 

outperformed by JRip and J48. ROUSER_1 and ROUSER_6 are the most stable versions 

among these seven versions, and their accuracy rates are comparable to J48 and JRip. 

However, ROUSER does not perform well on the data sets car and splice. We think that there 

are no optimization stage and pruning methods in ROUSER (but there are in RIPPER) and 

overfitting occurs. The car data set is a data set with hierarchy structure which is easily 

captured by a tree structure, and we think that this is the reason that J48 outperforms JRip and 

ROSUER. The embedded feature selection method of ROUSER performs well on the splice 

data set (as shown in experiment results later), but ROUSER itself does not perform well on 

this data set. We think that this might be the overfitting problem. A deeper investigation of this 

will be part of the future work.  

We design an experiment to examine ROUSER’s capability to handle missing values. We 

choose three data sets: Kr-vs-kp, Nursery, and Tic-tac-toe, to produce artificial data sets with 

missing values. The missing values are distributed randomly in each attribute with the same 

percentage (10%, 20%, 30%), while the distributions of missing values are different between 

attributes. The class attribute has no missing values, and besides the class attribute, no 
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instances have all missing values. Missing values cause contradictions, and the number of 

contradictions in each data set is shown in Table XIII. 

Table XII. Results for original nominal data sets. 

Data sets 

Accuracy (%) 

ROUSER 
JRip J48 

1 2 3 4 5 6 7 

Agaricus-lepiota 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Audiology.standardized 78.0 75.5 77.0 77.5 76.5 77.0 76.5 71.5 77.5 

Car 84.5 85.2 83.0 82.2 84.8 83.5 85.3 88.3 92.7 

House-votes-84 93.3 94.5 93.1 94.5 94.5 94.7 93.8 95.6 96.3 

Kr-vs-kp 99.2 99.3 99.5 91.9 99.3 99.6 99.4 99.2 99.5 

Nursery 98.3 97.8 98.3 76.9 97.1 98.3 98.0 96.8 97.2 

Promoters 80.2 83.0 74.5 75.5 84.0 84.0 79.3 82.1 81.1 

Splice 83.0 82.6 79.2 82.0 83.2 80.3 84.4 93.8 94.2 

Tic-tac-toe 96.9 91.8 96.1 91.7 94.2 97.2 96.8 97.7 85.8 

 

Table XIII. Number of contradictions in artificial missing values in data sets. 

Data sets total 
number of contradictions 

type1 type2 type3 type4 

Kr-vs-kp 10% average 3196 604.8 451.9 0 0 

Kr-vs-kp 20% average 3196 1865 830.4 0 0 

Kr-vs-kp 30% average 3196 2892.5 574.1 0 0 

Nursery 10% average 12960 11260.5 11198.8 155.6 0 

Nursery 20% average 12960 12958.6 12958.4 289.5 0 

Nursery 30% average 12960 12960 12960 636.8 0 

Tic-tac-toe 10% average 958 214.2 196.2 0 0 

Tic-tac-toe 20% average 958 693.9 620.5 0.4 0 

Tic-tac-toe 30% average 958 928.4 876.5 1.2 0 

The results are shown in Table XIV. The numbers reported in Table XIV are accuracy 

rates in percentage, and except those of the original (0%) data sets, each accuracy rate is the 

average accuracy rate of 10 different artificial data sets with the same rate of missing value. 

The results indicate that the performances of ROUSER are similar to JRip in Kr-vs-kp 
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and Tic-tac-toe data sets, better than J48 in Tic-tac-toe data set, and worse than J48 in 

Kr-vs-kp data set. The accuracy rate of ROUSER drops faster than JRip and J48 do in 

Nursery data set when missing value percentage rises. We speculate that the Nursery data set 

with missing values have too many type 3 contradictions, which will be ignored by ROUSER 

as we mentioned in section 3.2, or there are too many type 1 contradictions and this makes 

ROUSER miscalculate the potential boundary region. To address the problem, we may adapt 

probability theory and assign contradicted instances to the class with higher probability. 

Table XIV. Results for artificial missing values in data sets. 

data sets 
Accuracy (%) 

ROUSER_1 ROUSER_6 JRip J48 

Kr-vs-kp 0% (original) 99.2 99.6 99.2 99.5 

Kr-vs-kp 10% average 91.2 90.6 91.2 94.0 

Kr-vs-kp 20% average 85.5 84.8 84.3 88.6 

Kr-vs-kp 30% average 78.1 78.0 78.8 84.1 

Nursery 0% (original) 98.3 98.3 96.8 97.2 

Nursery 10% average 56.5 57.1 83.8 88.3 

Nursery 20% average 41.7 44.2 74.3 80.5 

Nursery 30% average 39.2 40.0 66.4 73.7 

Tic-tac-toe 0% (original) 96.9 97.2 97.7 85.8 

Tic-tac-toe 10% average 86.4 86.3 89.2 79.8 

Tic-tac-toe 20% average 80.1 79.6 80.9 73.1 

tic-tac-toe 30% average 74.2 74.9 74.0 70.0 

We design an experiment to examine the “ordered rules” strategy. ROUSER with 

ascending order rules are compared with ROUSER with descending order rules. The 

experimental results are given in Table XV. Each result is presented in two numbers, and the 

upper number is the original accuracy with ascending order rules, and the lower number is the 

difference after we switch to descending ordered rules. Ascending order is apparently better 

than descending order only in the Audiology.standardized data set, which has 24 class labels 
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with imbalanced distribution. However descending order is better in the Car data set and the 

accuracy becomes comparable with the accuracy of JRip and J48. Descending order is better 

than ascending order in the Splice data set. However the accuracy is still not comparable with 

the accuracy of JRip and J48. We observe that imbalanced multi-class data sets are sensitive 

to the ordered rule strategy. A deeper investigation of this will be part of the future work. 

Table XV. Results for ordered rule strategy. 

Data sets 
Accuracy (%) 

1 2 3 4 5 6 7 

Agaricus-lepiota 
100.0 100.0 100.0 100.0 100.0 100.0 100.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Audiology.standardized 
78.0 75.5 77.0 77.5 76.5 77.0 76.5 

-7.0 -3.5 -5.5 -2.5 -3.5 -5.5 -2.5 

Car 
84.5 85.2 83.0 82.2 84.8 83.5 85.3 

+6.0 +4.4 +7.2 +4.3 +4.9 +6.3 +5.3 

House-votes-84 
93.3 94.5 93.1 94.5 94.5 94.7 93.8 

+1.6 -0.5 +0.2 0.0 -0.5 -0.7 -0.5 

Kr-vs-kp 
99.2 99.3 99.5 91.9 99.3 99.6 99.4 

0.0 +0.1 -0.3 0.0 +0.1 -0.4 -0.1 

Nursery 
98.3 97.8 98.3 76.9 97.1 98.3 98.0 

+0.3 -0.4 +0.4 0.1 0.0 +0.2 +0.3 

Promoters 
80.2 83.0 74.5 75.5 84.0 84.0 79.3 

+2.8 +1.9 +10.4 +0.9 +0.9 +0.0 -1.0 

Splice 
83.0 82.6 79.2 82.0 83.2 80.3 84.4 

+4.3 +4.0 +8.0 +0.6 +3.5 +5.3 +3.4 

Tic-tac-toe 
96.9 91.8 96.1 91.7 94.2 97.2 96.8 

+0.2 +1.7 +2.5 +0.7 +0.4 +1.5 +1.4 

We design an experiment to prove that Chi-Square value is useful in the rule growing 

phase of ROUSER. In our original design, we adapt the Chi-Square value to reduce the 

attributes iteratively. To make a contrast, we replace the Chi-Square value with Information 

Gain, which is provided by Weka, and the results of the experiments on such a replacement are 
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given in Table XVI. The numbers reported in Table XVI are accuracy rates in percentage. Each 

result is presented in two numbers, and the upper number is the original accuracy before we 

replace Chi-Square value with Information Gain, and the lower number is the difference after 

we do such a replacement. We discover that the performance of Chi-Square version is 

obviously better than Information Gain version on the Audiology.standardized data set. The 

performances on the Promoters data set which are originally bad become better after we 

replace Chi-Square value with the Information Gain. However, the performances which are 

originally good become worse. Our conclusion is that ROUSER_1 and ROUSER_6 with 

Chi-Square feature selection are still more stable than all the other combinations.   

Table XVI. Results of replacing Chi-Square value with Information Gain in ROUSER. 

Data sets 
Accuracy (%) with Information Gain feature selection 

1 2 3 4 5 6 7 

Agaricus-lepiota 
100.0 100.0 100.0 100.0 100.0 100.0 100.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Audiology.standardized 
78.0 75.5 77.0 77.5 76.5 77.0 76.5 

-5.0 -3.0 -3.5 -5.5 -4.0 -3.5 -3.5 

Car 
84.5 85.2 83.0 82.2 84.8 83.5 85.3 

+0.3 +0.2 +0.2 0.0 0.0 +0.1 -0.1 

House-votes-84 
93.3 94.5 93.1 94.5 94.5 94.7 93.8 

+1.6 +1.1 +0.9 -0.9 +1.1 -0.2 -0.5 

Kr-vs-kp 
99.2 99.3 99.5 91.9 99.3 99.6 99.4 

+0.2 -0.1 0.0 0.0 -0.1 -0.2 0.0 

Nursery 
98.3 97.8 98.3 76.9 97.1 98.3 98.0 

+0.2 -0.1 +0.2 +1.4 +0.1 +0.1 0.0 

Promoters 
80.2 83.0 74.5 75.5 84.0 84.0 79.3 

0.0 -4.7 +11.3 +8.5 -3.8 -5.7 +6.5 

Splice 
83.0 82.6 79.2 82.0 83.2 80.3 84.4 

-0.3 -1.0 -1.1 -3.2 -1.6 -1.6 +0.5 

Tic-tac-toe 
96.9 91.8 96.1 91.7 94.2 97.2 96.8 

+0.3 +0.6 0.0 -0.3 -0.6 0.0 0.0 
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The experimental results of the discretized data set are summarized in Table XVII. The 

numbers reported in Table XVII are accuracy rates in percentage. The performances of 

ROUSER on discretized data set are not as well as the performances in the original nominal 

data sets, and we speculate the reason is that discretization may assign the same value to 

different real numbers, and this may make instances indiscernible and be considered as 

contradictions by ROUSER. As we mentioned before, ROUSER simply discards the 

contradictions, and hence it shows poor performance on these discretized data sets. 

Similarly, we can adapt probability theory and assign contradicted instances to the class 

with higher probability. We can also design an embedded discretization method for ROUSER, 

like what is done in JRip or J48, to handle real number data directly. From Table XI we 

discover that there are many contradictions in Abalone_dis, Adult_dis, and Australian_dis 

data sets, and hence ROUSER performs not as well as JRip and J48 on these data sets. 

Table XVII. Results for discretized data sets. 

Data sets 

Accuracy (%) 

ROUSER 
JRip J48 

1 2 3 4 5 6 7 

Abalone_dis 74.2 71.6 73.5 71.4 69.8 72.4 74.9 77.2 77.6 

Adult_dis 82.6 83.3 82.2 77.6 82.7 81.4 83.2 84.0 86.8 

Australian_dis 82.0 78.3 81.2 79.7 79.1 77.1 80.7 85.8 86.2 

Balance-scale_dis 74.1 73.9 73.8 56.2 72.8 72.6 73.0 73.8 63.2 

German_dis 68.5 66.7 64.2 71.1 68.3 65.7 69.0 71.0 71.1 

Hearts_dis 73.7 73.0 74.4 70.0 74.8 75.9 74.8 77.8 75.2 

The execution time in millisecond of ROUSER, JRip and J48 are shown in Table XVIII. 

We measure the training time of entire data set, instead of 10-fold. It is clear that tree-based 

strategy overwhelms the separate-and-conquer strategy in execution time, and the reason is 

simple: Unlike the tree-based strategy which ignores the data divided away, although the 
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separate-and-conquer strategy “separates” positive data in each iteration of building a rule, it 

needs all the negative data to stay in memory to complete this mission, and hence the same 

negative data will be executed for several times. 

There are two more reasons for ROUSER’s high execution time. First, DiscPow itself is 

not so “greedy”. To explain this, we make a comparison with Information Gain, which is 

adapted by C4.5 and RIPPER. When calculating the Information Gain for choosing an 

attribute, only the attribute itself and the class attribute are involved in the calculation. 

However, when calculating the DiscPow of an attribute, the whole decision table is involved, 

since we need to compare all the values between each pair of records. Second, ROUSER has 

no pruning methods and may build precise rules to explain only a few data records, and hence 

too many rules are built and time is wasted.  

Table XVIII. Training time. 

Data sets 

Training time (ms) 

ROUSER 
JRip J48 

1 2 3 4 5 6 7 

Agaricus-lepiota 68398 67689 72931 72715 68608 70509 69899 690 102 

Audiology.standardized 4242 4048 4559 4187 4220 4411 3953 36 9 

Car 7025 10240 7594 7524 10511 7369 8847 483 5 

House-votes-84 212 236 268 226 233 270 275 4 2 

Kr-vs-kp 57657 23548 58968 16565 23893 53409 34280 280 22 

Nursery 598793 773254 636622 415997 826664 633169 840923 30428 26 

Promoters 184 219 162 191 218 167 235 4 2 

Splice 1003074 1364238 1441220 676261 1352105 1247409 701302 297 38 

Tic-tac-toe 440 1442 1126 495 2166 573 528 31 3 

If we consider only the calculation complexity, ROUSER_1~3 should be faster than 

ROUSER_4~6, since searching for the MAX purity takes more time than searching for the 

FREQUENT MAX purity. However, the results tell us a different story. The reason can be 

discovered by examining the rule set size, as shown in Table XIX, where each rule set is built 
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from entire data set instead of data sets generated by the 10-fold cross-validation method. 

Since the calculation of DiscPow is more complex than purity, and DiscPow will be 

calculated several times when generating a rule, the rule set size dominates the execution time. 

We also discover that JRip’s rule set size is usually smaller than ROUSER, and that is because 

JRip adapts some pruning methods and optimization methods, and hence it makes the rule set 

size smaller. Some rule set size are extremely high, while their accuracy is low, and this could 

be considered as an overfitting problem, and we think this might be the reason why ROUSER 

performs not well on Car and Splice data sets. 

Table XIX. Rule set size. 

Data sets 

Rule set size 

ROUSER 
JRip J48 

1 2 3 4 5 6 7 

Agaricus-lepiota 12 11 12 12 11 11 11 8 24 

Audiology.standardized 55 53 54 52 54 54 52 27 31 

Car 230 265 229 230 270 229 230 97 131 

House-votes-84 12 13 15 13 13 16 16 10 6 

Kr-vs-kp 29 25 31 6 25 27 25 18 31 

Nursery 588 671 569 389 829 569 585 317 359 

Promoters 8 9 7 8 9 7 9 9 19 

Splice 295 346 362 125 329 324 242 63 184 

Tic-tac-toe 19 46 37 19 79 21 17 12 95 

We design an experiment to prove the feature selection method embedded in ROUSER 

is useful. The feature selection method is in the grow function of ROUSER, which iteratively 

ignores an attribute with DiscPow=0 and the lowest Chi-Square value. This method selects 

attributes for one class, and hence we perform the feature selection method on all classes and 

union each result as the final result. We name it DiscPow_Chi method for convenience. 

DiscPow_Chi is a deterministic feature selection method which returns a fixed number of 
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selected attributes and needs no additional threshold settings, while the Information Gain 

method simply returns the rank of all attributes and an appropriate threshold is needed. Thus 

we first choose CfsSubsetEval method together with BestFirst search method provided by 

Weka, which is also a deterministic feature selection, as the comparison. We compare the 

accuracy of JRip and J48 between the original data sets and the feature selected data sets. The 

results of the experiment are shown in Table XX. In data sets car and nursery, CfsSubsetEval 

method chooses only 1 attribute, which is obviously not able to represent the original data sets. 

In data set splice, DiscPow_Chi selects half amount of attributes than CfsSubsetEval, while 

the accuracy rates of both JRip and J48 are merely the same. In the data sets house-votes-84 

CfsSubsetEval outperforms DiscPow_Chi by choosing fewer attributes while keeping the 

high accuracy rate, and in the data set promoters CfsSubsetEval outperforms DiscPow_Chi 

by higher accuracy rate. Both DiscPow_Chi and CfsSubsetEval failed in the tic-tac-toe data 

set, but the problem of CfsSubsetEval is far more serious. To sum up, it is more possible for 

DiscPow_Chi than for CfsSubsetEval to avoid accuracy loss. 

We also make a comparison to Information Gain feature selection provided by Weka, 

which ranks each attribute from high to low. We choose attributes with higher rank, and the 

amount is the same with what DiscPow_Chi chose. The results are shown in Table XXI. On 

data sets Agaricus-lepiota, Audiology.standardized and Kr-vs-kp, DiscPow_Chi performs 

better than Information Gain feature selection, while Information Gain feature selection 

performs better on the Promoters data set. The other results are similar. The accuracy results 

show that DiscPow_Chi is no worse than Information Gain feature selection, but even better, 

since DiscPow_Chi is deterministic, and save the work of determining the number of selected 

attributes. The idea is very different between DiscPow_Chi and Information Gain feature 

selection. DiscPow_Chi iteratively removes the attributes that we do not need, while the idea 
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of Information Gain feature selection is to select what we want. 

Table XX. The comparison of DiscPow_Chi and CfsSubsetEval. 

Data name Feature selection method 
Number of 

attributes selected 

Accuracy 

JRip J48 

Agaricus-lepiota 

none 22 100.0 100.0 

DiscPow_Chi 5 100.0 100.0 

CfsSubsetEval 4 99.0 99.0 

Audiology.standardized 

none 69 71.5 77.5 

DiscPow_Chi 13 69.0 76.0 

CfsSubsetEval 14 71.0 77.0 

Car 

none 6 88.3 92.7 

DiscPow_Chi 6 88.3 92.7 

CfsSubsetEval 1 70.0 70.0 

House-votes-84 

none 16 95.6 96.3 

DiscPow_Chi 8 95.4 95.9 

CfsSubsetEval 4 95.6 96.0 

Kr-vs-kp 

none 36 99.2 99.5 

DiscPow_Chi 29 99.0 99.1 

CfsSubsetEval 7 94.1 94.0 

Nursery 

none 8 96.8 97.2 

DiscPow_Chi 8 96.8 97.2 

CfsSubsetEval 1 71.0 71.0 

Promoters 

none 57 82.1 68.9 

DiscPow_Chi 4 82.1 76.4 

CfsSubsetEval 6 86.8 79.3 

Splice 

none 60 93.8 94.2 

DiscPow_Chi 11 93.7 94.3 

CfsSubsetEval 22 94.4 94.4 

Tic-tac-toe 

none 9 97.7 85.8 

DiscPow_Chi 8 90.0 85.2 

CfsSubsetEval 5 76.3 78.2 
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Table XXI. The comparison of DiscPow_Chi and Information Gain feature selection. 

Data sets 

Number 

of 

selected 

attributes 

Accuracy (%) 

JRip J48 

DiscPow_Chi InfoGain DiscPow_Chi InfoGain 

Agaricus-lepiota 5/22 100.0 99.9 100.0 99.9 

Audiology.standardized 13/69 69.0 66.5 76.0 70.5 

Car 6/6 88.3 88.3 92.7 92.7 

House-votes-84 8/16 95.4 95.6 95.9 95.2 

Kr-vs-kp 29/36 99.0 96.7 99.1 97.2 

Nursery 8/8 96.8 96.8 97.2 97.2 

Promoters 4/57 82.1 84.0 76.4 84.0 

Splice 11/60 93.7 95.2 94.3 94.5 

Tic-tac-toe 8/9 90.0 91.3 85.2 85.3 

 

5.4 Summary 

The performance of ROUSER in accuracy is usually no worse and sometimes better 

than that of JRip or J48. However, the time cost is high. ROUSER is sensitive to 

contradictions which are originally in the data, since ROUSER simply ignores contradictions. 

The embedded feature selection method is deterministic and more possible to avoid accuracy 

loss. ROUSER has some good properties, and how to keep these good properties while 

avoiding the shortcomings would be the focus of the feature work.   
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CHAPTER 6 

CASE STUDY 

 

6.1 Introduction 

The objective of this case study is to find out the cause of machine fault of a roughing 

mill in a hot strip mill of the largest steel making company in Taiwan. First we will introduce 

how to implement data mining techniques in a cooperative data analysis. Second we will 

describe the background knowledge of the case study and make a brief explanation to the data. 

Then we will show how we build up models and rules to analyze the cause of machine fault. 

After that, we will look into the data and inspect the rules we built. Finally we will give a 

conclusion about this case study. 

6.1.1 Back Ground Knowledge 

We first introduce the background knowledge about the manufacturing process. The 

function of a hot strip mill is to turn a slab into a coil for the convenience of further process. 

There are two hot strip mills, and the structures inside them are different. Our attention is on 

one of the two hot strip mills. After a slab enters the hot strip mill, it must be heated up at the 

furnace to become soft. A prepared slab will then enter the roughing mill. A roughing stand 

contains two parts, the edge mill and the rough mill; the former adjusts the slab in a good 

width, while the later thins the slab. After this, a slab becomes a transfer bar. The transfer bar 

will be sliced into pieces by the crop shear, and finally it enters the finish mill and becomes a 

coil after cooling.  
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6.1.2 Problem 

The problem occurs at the rough mill. The top and bottom working rolls of the rough 

mill directly contact the slab when rolling, and the torque comes from the engines connected by 

the spindle. In these recent years the spindles broke frequently, and the experts suspect that the 

cause is that a slip happens during the rolling process. The rough mill rolls the slab back and 

forth for 5 passes, and each rolling pass makes the slab thinner. A slip may occur in each 

rolling pass, and the spindles may suffer unexpected impact and a slip may lead to metal 

fatigue. 

6.1.3 Data 

The data collected from the mill can be roughly categorized into three types, namely the 

materials, the mill, and the rolls.  

Material Data 

Material data contains the features about the material, such as the steel family, and the 

steels in the same family have similar properties. The material data also contains the thickness 

drafts of each pass performed by the rough mill.  

Mill Data 

Mill data comes from the mill itself. Some attributes like the moving speed of a slab are 

not easily to measure directly, and hence the experts measure the rolling speed from the mill 

to represent the slab moving speed; the speed draft of a slab is also a parameter setting of the 

mill. The slab has a threading speed, which is the initial speed of threading. The running 

speed is the speed right before the slab enters the mill. Only the default settings of these two 

speeds are recorded. The roll torque of working rolls is generated by the motors of mill. The 

roll force pressed on the slab is also generated by the motors of mill. 
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Roll Data 

There are two working rolls, top and bottom, and there are also plenty of measurement 

results about the working rolls. Here we introduce the rolling torque only. The difference 

between the roll torque and the rolling torque is that the roll torque is measured from the 

motors of the mill while the rolling torque is measured from the working rolls themselves.  

 

6.2 Model Building 

6.2.1 Data Preprocessing 

Data Cleaning 

There are 21,907 data records and 187 attributes (excluding the class attributes) in the 

original data set, which is collected from the hot strip mill for 2 months. After data cleaning, 

including removing error data records, redundant attributes, duplicate attributes, serial 

numbers, and time stamps, 21,891 data records and 172 attributes (excluding the class 

attributes) remain.  

Data Reformatting 

Each data record is bound to a particular piece of material, which is originally a slab and 

finally a coil, and hence data collected from 5 passes sticks together in one record. The static 

information such as material data we introduced before is also included. Torque ratio of each 

pass is also in one record. It is obvious that data in this format is not suitable for any 

classification algorithm to analyze, so we reformat the original data set into 5 data sets based 

on the pass number. 

As we mentioned before, materials in the same family share similar physical properties, 

and hence we divide the original data for each family. There are 27 families in the original 

data set, and 5 passes for each record, and hence the original data set is reformatted into 
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27*5=135 data sets.  

Data Discretization 

Since the proposed ROUSER processes nominal data only, discretized data sets are 

made from the 135 data sets. The discretized method is provided by Weka, and it is an 

implementation of Fayyad & Irani's MDL method [6]. 

Data Integration: Torque Ratio 

The torque ratio is the class attribute, and it is fused from the rolling torque we just 

mentioned. The value of torque ratio can be used to determine a slip is happening or not. The 

value range of torque ratio is [0, 1]. The safe range of pass 1 is (0.45, 0.55), and so is that of 

pass 2; the safe range is (0.4, 0.6) for pass 3; and it is (0.35, 0.75) for passes 4 and 5. The 

others are slip range. 

Feature Selection 

Some attributes are removed, and the reasons vary. Some of them are removed since 

they are already known to be dependent on the class attribute, and this type of attributes will 

dominate the results. However they are not helpful to explain the problem. Another reason of 

why the attributes are removed is that the timing they are measured is after the slip happens. 

Absolute time stamps and serial numbers are also removed.  

Slip data records are rare in the final data sets.  

6.2.2 Classification Algorithms 

We use ROUSER to analyze the discretized data sets, and we use JRip and J48 provided 

by Weka to analyze data sets with real numbers. We use the default setting of JRip (-F 3 -N 2.0 

-O 2 -S 1) together with two more settings (-F 3 -N 1.0 -O 0 -S 1 -E, -F 3 -N 1.0 -O 0 -S 1 -E 

-P). We also use the default setting of J48 (-C 0.25 -M 2) together with two more setting (-S 

-C 0.5 -M 1, -S -C 0.25 -M 2). Since the slip records are rare in the data set, the default 
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settings of JRip and J48 may consider them as noise and ignore them to pursue the overall 

accuracy; as a result, the models are too simple and explain nothing. So we try several 

different settings to remove the mechanisms which are designed to prevent models from 

growing too luxuriant and becoming over fitting.   

 

6.3 Inspect the Result Rules 

We generate many rule sets from 135 data sets with 3 algorithms and different settings, 

and we give some of the rules. Following are the rules generated by J48 on the data set of family 

27 at pass 5: 

 

(R2 roll torque_pass5 [kNm]\[1] >= 3078.667) => Torque ratio p5=[0.65,1] (27.0/0.0). 

(R2 roll torque_pass5 [kNm]\[1] >= 2585.333) and  

(R2 total roll force_pass5 [kN]\[1] <= 23046.67) => Torque ratio p5=[0.65,1] (3.0/0.0). 

 

The first rule indicates that if the torque value measured from the motors of mill for pass 5 is 

bigger than or equal to 3078.667, then the torque ratio of pass 5 will be in the range [0.65,1], 

which is a slip range. The second rule indicates that if the torque value measured from the 

motors of mill for pass 5 is bigger than or equal to 2585.333, and the force value measured 

from the motors of mill for pass 5 is smaller than or equal to 23046.67, then the torque ratio 

of pass 5 will be in the slip range [0.65,1]. From these two rules we may conclude that when 

torque measured from the motors of mill is too high, and sometimes when the force measured 

from the motors of mill is too low, a slip may occurs.  

Our job is to summarize the results and let the experts to inspect the results. We need 

feedbacks from the experts to improve the experiments. 
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Consider the rules provided above, the torque value measured from the motors of mill 

for pass 5 attribute appears twice, and the force value measured from the motors of mill for 

pass 5 appears once. The more frequent an attribute appears in the rules, the more important 

the attribute is, especially when we built plenty of rules.  

From all rule sets we discover one same phenomenon that the torque measured from the 

motors of mill when biting in a slab is the most frequent attribute for passes 3, 4, and 5. The 

rolling speed measured from the motors of mill is the second most frequent attribute for 

passes 3, 4, and 5.  

We also discover that some attributes never appear in any rule. This discovery may help 

the experts to reduce dimensions when building a predictor. 

The third most frequent attribute for passes 3 and 4 is the rolling speed of the top 

working roll, which is preferred by JRip and J48, and the third most frequent attribute for 

passes 5 is the bottom working roll number, which is preferred by ROUSER and never chosen 

by JRip and J48. Both of these results are considered reasonable to experts. We discovered 

that JRip and J48 prefer real number attributes and they may overlook some important 

nominal attributes.  

From the results we find that the default settings of running speed, threading speed, 

force, and torque, are involved, while the thickness draft of each pass are not involved. We 

look into the data to seek out the evidence of this discovery. First, we find that thickness draft 

of each pass differs only a little in each data record, which may be the reason of why the 

thickness is not involved. Second, we find that different records with exactly the same slab 

properties (such as family) and the same size of finished products may have different settings 

on the mill, and some setting combinations are rare with regard to the other records with the 

same slab properties, and these rare settings are usually accompanied with slip. We considered 
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this phenomenon as one of the causes of slip.  

6.4 Summary 

Through data mining techniques we narrow the exploring range of the problem 

happened in a rough mill. The attributes chosen by our experiments are considered reasonable, 

and we find that JRip and J48 are good at capturing important real number attributes, while 

ROUSER is good at capturing the important nominal attributes. The results also respond to 

the experts’ doubts about the default settings. Following the narrowed clues, we look into the 

data and find some evidences to explain that the default settings may be one cause of slip. 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

57 

 

 

 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

A rule-based classification algorithm named ROUSER is proposed. It is designed to 

process nominal data and generate human understandable decision rules. ROUSER uses a 

rough set approach as its search heuristic, and the rule generation method of ROUSER is 

based on the separate-and-conquer strategy. 

As a prototype without the optimization stage or the pruning stage to reduce errors, 

ROUSER still provides classification performance comparable to or even better than that 

given by the rule-based or tree-based classification algorithms considered in experiments. 

Since the search heuristics of ROUSER is totally different from the search heuristics (Entropy 

and Information Gain) used by the other three algorithms, the results imply that the proposed 

PotBound and DiscPow are useful. This also shows the potential of ROUSER and gives an 

example of future work.  

For future work, we plan to conduct more experiments, develop better strategies to 

select attributes and handle contradictions, and apply ROUSER to data sets obtained from a 

real-world case study. 
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