
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

國立政治大學資訊科學系
Department of Computer Science

National Chengchi University

碩士論文

Master’s Thesis

以規則為基礎的分類演算法：應用粗糙集

A Rule-Based Classification Algorithm:

A Rough Set Approach

研 究 生： 廖家奇

指導教授： 徐國偉

中華民國一百零一年七月

July 2012

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

以規則為基礎的分類演算法：應用粗糙集

A Rule-Based Classification Algorithm:

A Rough Set Approach

研 究 生：廖家奇 Student：Chia-Chi Liao

指導教授：徐國偉 Advisor：Kuo-Wei Hsu

國立政治大學

資訊科學系

碩士論文

A Thesis

submitted to Department of Computer Science

National Chengchi University

in partial fulfillment of the Requirements

for the degree of

Master

in

Computer Science

中華民國一百零一年七月

July 2012

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

i

Abstract

In this thesis, we propose a rule-based classification algorithm named

ROUSER (ROUgh SEt Rule), which uses the rough set theory as the basis of the

search heuristics in the process of rule generation. We implement ROUSER

using a well developed and widely used toolkit, evaluate it using several public

data sets, and examine its applicability using a real-world case study.

The origin of the problem addressed in this thesis can be traced back to a

real-world problem where the goal is to determine whether a data record

collected from a sensor corresponds to a machine fault. In order to assist in the

root cause analysis of the machine faults, we design and implement a rule-based

classification algorithm that can generate models consisting of human

understandable decision rules to connect symptoms to the cause. Moreover,

there are contradictions in data. For example, two data records collected at

different time points are similar, or the same (except their timestamps), while

one is corresponding to a machine fault but not the other. The challenge is to

analyze data with contradictions. We use the rough set theory to overcome the

challenge, since it is able to process imperfect knowledge.

Researchers have proposed various classification algorithms and

practitioners have applied them to various application domains, while most of

the classification algorithms are designed without a focus on interpretability or

understandability of the models built using the algorithms. ROUSER is

specifically designed to extract human understandable decision rules from

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

ii

nominal data. What distinguishes ROUSER from most, if not all, other

rule-based classification algorithms is that it utilizes a rough set approach to

select features. ROUSER also provides several ways to decide an appropriate

attribute-value pair for the antecedents of a rule. Moreover, the rule generation

method of ROUSER is based on the separate-and-conquer strategy, and hence it

is more efficient than the indiscernibility matrix method that is widely adopted

in the classification algorithms based on the rough set theory.

We conduct extensive experiments to evaluate the capability of ROUSER.

On about half of the nominal data sets considered in experiments, ROUSER can

achieve comparable or better accuracy than do classification algorithms that are

able to generate decision rules or trees. On some of the discretized data sets,

ROUSER can achieve comparable or better accuracy. We also present the results

of the experiments on the embedded feature selection method and several ways

to decide an appropriate attribute-value pair for the antecedents of a rule.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

iii

摘要

在本論文中，我們提出了一個以規則為基礎的分類演算法，名為

ROUSER（ROUgh SEt Rule），它利用粗糙集理論作為搜尋啟發的基礎，進

而建立規則。我們使用一個已經被廣泛利用的工具實作 ROUSER，也使用

數個公開資料集對它進行實驗，並將它應用於真實世界的案例。

本論文的初衷可被追溯到一個真實世界的案例，而此案例的目標是從

感應器所蒐集的資料中找出與機械故障之間的關聯。為了能支援機械故障

的根本原因分析，我們設計並實作了一個以規則為基礎的分類演算法，它

所產生的模型是由人類可理解的決策規則所組成，而故障的徵兆與原因則

被決策規則所連結。此外，資料中存在著矛盾。舉例而言，不同時間點所

蒐集的兩筆紀錄極為相似、甚至相同（除了時間戳記），但其中一筆紀錄與

機械故障相關，另一筆則否。本案例的挑戰在於分析矛盾的資料。我們使

用粗糙集理論克服這個難題，因為它可以處理不完美知識。

研究者們已經提出了各種不同的分類演算法，而實踐者們則已經將它

們應用於各種領域，然而多數分類演算法的設計並不強調演算法所產生模

型的可解釋性與可理解性。ROUSER 的設計是專門從名目資料中萃取人類

可理解的決策規則。而 ROUSER 與其它多數規則分類演算法不同的地方是

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

iv

利用粗糙集方法選取特徵。ROUSER 也提供了數種方式來選擇合宜的屬性

與值配對，作為規則的前項。此外，ROUSER 的規則產生方法是基於

separate-and-conquer 策略，因此比其它基於粗糙集的分類演算法所廣泛採用

的不可分辨矩陣方法還有效率。

我們進行延伸實驗來驗證 ROUSER 的能力。對於名目資料的實驗裡，

ROUSER 在半數的結果中的準確率可匹敵、甚至勝過其他以規則為基礎的

分類演算法以及決策樹分類演算法。ROUSER 也可以在一些離散化的資料

集之中達到可匹敵甚至超越的準確率。我們也提供了內建的特徵萃取方法

與其它方法的比較的實驗結果，以及數種用來決定規則前項的方法的實驗

結果。

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

v

誌謝

人的基因之中，或多或少都存著探索的天性；旅遊可以讓我們探索不同的風景地

貌與文化風俗，而我念研究所也是為了探索，為了窺探人們如何進行研究。短短兩年過

去了，我看到了冰山一角，卻已經要告別親愛的師長與同學，以及讓我成長的學校。

研究對我而言並不是一件簡單的事，大學四年我望著這個領域充滿好奇，期待有

一天我也能對研究略知一二，抱著這份憧憬，大學時代的專題是我第一次對研究的初探，

感謝沈錳坤教授在這段時間的悉心指導；進入研究所之後，由於對資料探勘抱持興趣，

但學校的訓練無法滿足我對處理實務問題的渴望，因此我很感謝王智中博士能提供我機

會接觸真實的案例，帶著鋼盔進入工廠，了解資料如何蒐集，並嘗試找出與故障相關的

因果關係。在這段日子裡，為了對背景知識有更多了解，成大圖書館便成了我每周報到

的好去處，雖然我沒念過成大，卻也感謝成大對我的間接指導。

研究所的日子進行至此，我已不只是在探索如何進行研究，更是在陌生的工廠與

大學之間探險，感謝本人的指導教授徐國偉老師憑著熱忱與經驗，接受我那異於常規的

學習路線，不倦地導正我的航向，並給我極大的發揮空間，最後能順利完成學位。

我的好同學林宏哲是我在實驗室中的最佳飯友，而他深刻的哲學思考與商業知識

總是能在餐後活絡我那迷失於研究的大腦；而我在研究所修最多的是劉昭麟教授開的課，

也很感謝劉教授總是能回應我下課後的怪問題。感謝我的父母與家人這些年來的默默支

持，讓我跌倒之後還有爬起的機會，也感謝政大，給我一個良好的環境。非常感謝口試

委員們能蒞臨指導，學生深感榮幸。

本研究是在國科會計畫 NSC 100-2218-E-004-002 的補助下完成的，特別感謝這份

支持，讓所有實驗皆能如期完成。

廖家奇

民國 101年 7月 23日

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

vi

Table of Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 Classification Problem .. 1

1.2 Tree-Based and Rule-Based Classification Algorithms ... 2

1.3 Rough Set Based Classification Algorithms ... 3

1.4 Data Mining .. 4

1.5 Thesis Organization .. 5

CHAPTER 2 PRELIMINARY ... 6

2.1 Rule-Based Classification Algorithms ... 6

2.1.1 The Basics .. 6

2.1.2 Separate-and-Conquer ... 7

2.1.3 Search Heuristics ... 7

2.1.4 Pruning and Optimization .. 9

2.2 The Rough Set Theory .. 9

2.2.1 Information System and Decision Table.. 10

2.2.2 Indiscernibility Relation .. 11

2.2.3 Rough Set .. 12

2.2.4 Reduct and Core .. 14

2.2.5 Indiscernibility Matrix ... 17

CHAPTER 3 DESIGN OF THE PROPOSED METHOD ... 18

3.1 Potential Boundary Region and Discernibility Power .. 18

3.2 ROUSER .. 22

CHAPTER 4 IMPLEMENTATION OF THE PROPOSED METHOD................................ 28

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

vii

4.1 WEKA .. 28

4.1.1 Import Data .. 28

4.1.2 Classifier .. 28

4.1.3 Cross-Validation .. 29

4.2 Data Structure ... 29

4.2.1 Rough Set .. 29

4.2.2 Decision Rule .. 30

4.3 ROUSER .. 32

4.3.1 BuildClassifier() ... 32

4.3.2 OneClassRule() ... 32

4.3.3 grow() ... 34

4.3.4 BestAntd() .. 35

CHAPTER 5 EXPERIMENT AND RESULTS ... 36

5.1 Environmental Setting .. 36

5.2 Data Sets ... 36

5.3 Results .. 39

5.4 Summary ... 49

CHAPTER 6 CASE STUDY ... 50

6.1 Introduction .. 50

6.1.1 Back Ground Knowledge .. 50

6.1.2 Problem .. 51

6.1.3 Data .. 51

6.2 Model Building ... 52

6.2.1 Data Preprocessing .. 52

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

viii

6.2.2 Classification Algorithms .. 53

6.3 Inspect the Result Rules ... 54

6.4 Summary ... 56

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ... 57

REFERENCE ... 58

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

ix

List of Figures

Figure 1. Cooperative data analysis. ... 5

Figure 2. The SEPERATE&CONQUER algorithm. ... 7

Figure 3. (a) Classic set. (b) Rough set. (c) Rough set for example. .. 12

Figure 4. (a) The space of d=y. (b) The lower-approximation of d=y. (c) The

upper-approximation of d=y. .. 13

Figure 5. (a) The data space. (b) The positive region of U/D 14

Figure 6. (a) The new decision table with a3. (b) Data space of a3=1 . (c) Data space of a3=2.

(d) Data space of a3=3. ... 15

Figure 7. a1, a3 as the reduct. .. 16

Figure 8. a2, a3 as the reduct. .. 16

Figure 9. An example of indiscernibility matrix. ... 17

Figure 10. The redefined rough set. .. 19

Figure 11. (a) Decision table A' = (U,C∪D {a2}). (b) The new rough set of d=y. 20

Figure 12. The rough set of A = (U,C∪D). ... 20

Figure 13. The rough set of A' = (U,C∪D {a2}) ... 21

Figure 14. The GROW function. ... 23

Figure 15. The DISCPOW function. ... 23

Figure 16. The BUILD_CLASSIFIER function. .. 26

Figure 17. The example for checking if two records are indiscernible. 26

Figure 18. The data structure of a rough set. .. 30

Figure 19. The data structure of the antecedent of a rule: RAntd. ... 30

Figure 20. The data structure of a rule: RouserRule. .. 31

file:///D:/資訊科學/DM/我的畢業論文/畢業論文最後修改_v2.docx%23_Toc330895207

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

x

Figure 21. A data structure of the rule set: m_Ruleset.. 31

Figure 22. The data structure of ROUSER’s rule model. ... 31

Figure 23. The flow chart of BuildClassifier(). ... 32

Figure 24. The flow chart of OneClassRule(). .. 33

Figure 25. The flow chart of grow(). .. 34

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

xi

List of Tables

Table I. Information system A=(U,C) ... 10

Table II . Decision table A=(U,C∪D) .. 11

Table III. Type 1 indiscernibility... 27

Table IV. Type 2 indiscernibility. .. 27

Table V. Type 3 indiscernibility. ... 27

Table VI. Type 4 indiscernibility. ... 27

Table VII. Original nominal data sets. .. 37

Table VIII. Discretized data sets. .. 37

Table IX. Details of discretization. ... 38

Table X. Number of contradictions in original nominal data sets .. 38

Table XI. Number of contradictions in discretized data sets. ... 38

Table XII. Results for original nominal data sets. .. 40

Table XIII. Number of contradictions in artificial missing values in data sets. 40

Table XIV. Results for artificial missing values in data sets. ... 41

Table XV. Results for ordered rule strategy. ... 42

Table XVI. Results of replacing Chi-Square value with Information Gain in ROUSER. 43

Table XVII. Results for discretized data sets. .. 44

Table XVIII. Training time. .. 45

Table XIX. Rule set size. .. 46

Table XX. The comparison of DiscPow_Chi and CfsSubsetEval. ... 48

Table XXI. The comparison of DiscPow_Chi and Information Gain feature selection. 49

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

1

CHAPTER 1

INTRODUCTION

1.1 Classification Problem

In machine learning, a classification task is to classify an unknown data record into a

pre-specified category based on values of attributes of the data record. Before the machine is

capable to do the classification task, it needs to learn from some training data where each data

record has been associated with a category. Each attribute of a given data set corresponds to a

domain of continuous values, i.e. real numbers, or a domain of discrete values, i.e. nominal

data.

The proposed classification algorithm is specialized to nominal data. Nominal data is

common in banking. Most of a customer’s personal information, such as gender, marital status,

hobbits, and hometown, are nominal data. Banks would like to have rules to utilize a customer’s

personal information in calculating his or her credit score. In addition, biologists are familiar

with nominal data. Gene data is all nominal, and biologists want to study the relationships

between gene combinations and a certain disease. Furthermore, although data from sensors is

usually real numbers, engineers often need to discretize them into nominal data for further

processing.

To monitor a machine and check if it is stable or not, for example, engineers may want to

use data of real numbers from sensors in the machine to train a classification model, or a

classifier, in which the underlying classification algorithm is based on complex mathematical

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

2

methods. Examples of such classification algorithms include Support Vector Machines (SVMs)

[4] or Artificial Neural Networks (ANNs) [2]. Engineers may obtain high accuracy from the

trained classification models but learn little from them. Engineers need to know the possible

causes of a fault or a problem in order to perform fault diagnosis and resolve the problem, but

they will have difficulty in identifying the possible causes from complex mathematical

expressions given by SVMs or ANNs.

The goal of the classification algorithm in this thesis is to extract human understandable

decision rules from nominal data. A decision rule is a function mapping a data space (a space of

data records) to a class space (a space of categories or class labels). A human understandable

decision rule is helpful for domain experts, such as engineers in the above example, to learn the

causes and effects from data, and it is also important for scientists who intend to acquire

knowledge from data.

1.2 Tree-Based and Rule-Based Classification Algorithms

Decision tree learning is one of the most widely used and practical methods for

inductive inference [13], and a model learned by the method is a discrete-valued function,

which can be represented by a decision tree. A classification algorithm which adapts decision

tree learning method is called a tree-based classification algorithm.

Unlike the tree-based algorithms, the hypotheses learned by a rule-based classification

algorithm are sets of if-then rules, which is the most expressive and human-understandable.

One way to learn a set of rules is re-representing a learned decision tree by a set of

mutual-exclusive rules, one rule for one path from the root to the leaf in the tree. Another

widely used method for rule learning is separate-and-conquer (sequential covering).

First-order rules are rules with variables, and they are more powerful in representation than

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

3

decision tree or propositional rules in some special cases. However in this thesis we focus on

learning propositional rules.

Researchers have proposed several classification algorithms with the ability of rule

generation. Rule-based classification algorithms like RIPPER (Repeated Incremental Pruning

to Produce Error Reduction) [3] can generate rules directly, while tree-based classification

algorithms like ID3 [17] and C4.5 [18] can also generate rules after transformation. C4.5 is one

of the most popular classification algorithms [21], while RIPPER represents the state-of-the-art

rule-based classification algorithms [10] [11]. What makes the classification algorithm

proposed in this thesis different from the rule-based and tree-based classification algorithms is

that it decides an attribute-value pair for the antecedents of a rule according to the rough set

theory.

1.3 Rough Set Based Classification Algorithms

Rough set theory is a mathematical tool to describe imprecise knowledge. The most

successful application of rough set is feature selection. Based on the features selected by

rough set approach, researchers attempt to develop classification algorithms. Indiscernibility

matrix [14] is widely adapted by these researchers to generate rules from data. In most

classification algorithms that are based on the rough set theory, the indiscernibility matrix is

used to generate all possible reducts (each of which is a subset of attributes) in nominal data

and then generate rules from reducts. However, the computational cost of the indiscernibility

matrix is high. There exist speed-up methods, but most of them are still based on the

indiscernibility matrix [1][5]. The classification algorithm proposed in this thesis adopts the

separate-and-conquer strategy [7] rather than the indiscernibility matrix, for rule generation.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

4

1.4 Data Mining

Data mining is relatively a young field in computer science, and the goal is to capture

knowledge from data in human-understandable structure for further use [24]. To achieve this

goal, different disciplines like artificial intelligence, machine learning, statistics, and database

systems are fused together.

In a practical application of data mining, some customizations are required to fit a

client’s need. Although the goal of data mining is to capture human-understandable

knowledge, sometimes the discovered knowledge is still too hard for clients to understand. In

order to bridge the gap between the client and engineers, we follow a cooperative data

analysis method. Here we introduce how we implement data mining techniques in cooperative

data analysis. In Figure 1, the User is the client or the person who has the need of data

analysis, and the Miner is the one who analysis the data. When User hands the data to Miner

and introduces the background, the cooperation has begun. First the Miner enters the stage of

improvement, understanding the user’s need, being familiar with the data, making clear the

way to settle the problem, and seeking out the suitable algorithms. After that, the Miner enters

the stage of model building. At this stage, Miner preprocesses the data, and builds models

from the data. Followed by the stage of building rules, Miner summarizes results from the

models and makes them understandable to user. The cycle of the cooperation now turns to the

user’s side, and enters the stage of results inspecting. The user must spend time to inspect the

results and judge them by professional knowledge. We hope that no matter the results coming

from miner is useful or not, User can make some feedback to Miner, since User is the one

who is mostly sensitive to the case and is professional to the background knowledge. This is

the stage of feedback. Receiving the feedback from the User, Miner can think and improve the

analysis methods, and make the cooperative analysis a positive cycle.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

5

Figure 1. Cooperative data analysis.

1.5 Thesis Organization

The rest of this thesis is organized in the following way: Chapter 2 will give the

preliminaries, and the proposed classification algorithm will be introduced in Chapter 3.

Chapter 4 will be the implementation of the proposed algorithm. The experimental results are

presented in Chapter 5. A case study is given in Chapter 6. The thesis will be concluded in

Chapter 7 with potential directions for future work.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

6

CHAPTER 2

PRELIMINARY

2.1 Rule-Based Classification Algorithms

2.1.1 The Basics

Rule induction is to learn rules from the given training data, and a rule-based

classification algorithm uses the learned rules to classify unseen data records. For classification,

a decision rule is a logic statement with the following form:

condition1 ∧ condition2 ∧…→class

where a condition is usually an attribute-value pair, indicating a certain value of certain

attribute that is required to trigger the condition.

If a training data record matches all conditions of the rule, we say that the rule covers

the data record; if the rule covers a data record and classify the data record to the right class,

we say that the rule explains the data record. Given a rule set R, for every possible data

record, if there exists a rule which is able to cover the record, we say that the set of rules are

exhaustive. If no two rules in R cover the same data record, we say that the rule set is

mutually exclusive. If the rule set is not mutually exclusive, a data record can be covered by

several rules and lead to contradicting results. Generally there are two approaches to

overcome this problem: Ordered rules and unordered rules. Ordered rules rank the rules by a

certain criteria (e.g. accuracy, coverage, description length), so only one rule will be chosen to

classify a data record. Unordered rules allow multiple rules to be triggered to classify a single

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

7

data record through voting or weighting methods.

RIPPER [3] is a popular rule-based classification algorithm. It has two stages: The

generation stage and the optimization stage. The classification algorithm proposed in this

thesis competes with it in the generation stage.

2.1.2 Separate-and-Conquer

The separate-and-conquer strategy, or sequential covering, first builds a rule that

explains a part of the training data, separates them, and conquers the rest recursively until no

data remains. It ensures that every data record is at least covered by one rule. Figure 2 gives the

separate-and-conquer algorithm, the core of the proposed classification algorithm in this thesis.

Before the algorithm begins, one of the classes is chosen. POSITIVE chooses the data that

should be classified to the chosen class, and NEGATIVE chooses the others. Every rule is

empty in the beginning, and continues to grow until no negative data is covered by it.

Figure 2. The SEPERATE&CONQUER algorithm.

2.1.3 Search Heuristics

Search heuristics are used to evaluate the found hypotheses. The GROW function in the

 Class = CHOOSE(ClassSet)

 SEPERATE&CONQUER(Class,TrainData):

RuleSet =∅

while POSITIVE(TrainData)≠∅

Rule=[null→Class]

Covered=COVER(TrainData,Rule)

while NEGATIVE(Covered)≠∅

GROW(Rule,Covered)

Covered= COVER(Covered ,Rule)

RuleSet=RuleSet ∪{Rule}

TrainData=TrainData \ Covered

return RuleSet

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

8

separate-and-conquer algorithm given in Figure 2 searches from the covered data a suitable

attribute and the corresponding value in order to grow a rule. Examples of search heuristics

include Entropy and used in ID3 [17] and C4.5 [18].

Entropy

Entropy is the weighted average of information content of each class and originates from

the ID3 decision tree learning system [7]. Given a set S, the Entropy of the set S is defined as:

𝐸(𝑆) = − ∑ 𝑃𝑟(𝑗)𝑙𝑜𝑔2𝑃𝑟 (𝑗)

𝑁

𝑗=1

where N is the number of different values of an attribute in S, and 𝑃𝑟(𝑗) is the proportion of the

value j in the set S.

The definition of Entropy above is suitable for decision trees. To be suitable for a

rule-based classification algorithm, the Entropy can be defined as:

𝐸(𝑆) = −
𝑝

𝑝 + 𝑛
𝑙𝑜𝑔2

𝑝

𝑝 + 𝑛
−

𝑛

𝑝 + 𝑛
𝑙𝑜𝑔2

𝑛

𝑝 + 𝑛

where p is the number of positive instances covered by a given rule r, and n is the number of

positive instances covered by the given rule r. It is obvious that this definition is a special

binary case of the original definition.

Information Gain

Information Gain measures the expected reduction in Entropy caused by partitioning the

instances according to an attribute [13]. The definition of Information Gain is:

𝐼𝐺(𝑆, 𝑎) = 𝐸(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝑎)

𝐸(𝑆𝑣)

where 𝑎 is the attribute, and 𝑆𝑣 is the subset of 𝑆 for which attribute 𝑎 has value 𝑣.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

9

2.1.4 Pruning and Optimization

We believe that a generated rule might be overfitting, which means that a rule is grown

too precisely to achieve high accuracy, while few data records are explained by this strict rule.

To avoid overfitting, pruning methods were introduced to shorten the rule. In general there are

two categories of pruning methods: Pre-pruning and post-pruning. Pre-pruning methods stop

the growing of the rule by implementing some stopping criteria, such as Purity, Minimum

Description Length, significance, etc. Post-pruning methods drop part of the conditions from a

grown rule by testing if the pruned rule performs better than the original rule on some criteria or

not. Currently the proposed ROUSER adapts no pruning methods, while implementing a

pruning method suitable for ROUSER will be part of the future work.

Rules generated through pruning stage are usually perform well, and experiments show

that the whole rule sets are significantly improved on both the size and the performance

through global optimization, which is a post-induction optimization method on the whole

rule set. Currently ROUSER adapts no optimization methods, while investigating an

optimization method suitable for ROUSER will be part of future work.

2.2 The Rough Set Theory

The rough set theory is first introduced by Zdzisław I. Pawlak in 1982 as a mathematical

tool to characterize imprecise knowledge [15][16]. The main difference between a rough set

and a classic set is the appearance of a boundary “region” (not just a boundary), where the

uncertain elements exist, in a rough set. The fuzzy set theory [22] is another tool to characterize

imprecise knowledge. The main difference between a fuzzy set and a rough set is that a fuzzy

set needs a predefined function to decide the “membership degree” of each element. .

Practically speaking, such a membership function is defined under some assumptions and on a

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

10

case-by-case basis. Nevertheless, a rough set needs no membership function, since the

uncertain elements are located in the boundary region in a rough set.

2.2.1 Information System and Decision Table

An information system 𝑨 is a pair, denoted by 𝑨 = (𝑈, 𝐶), where 𝑈 is the universe, and

𝐶 is the set of attributes. When we deal with classification or clustering issues, the elements of

𝑈 can be considered as instances. For each attribute 𝑎 ∈ 𝐶, the value set is 𝑉𝑎 . For each

instance 𝑥 ∈ 𝑈, it contains |𝐶| attribute values, and the value of attribute 𝑎 in instance 𝑥 is

denoted by 𝑎(𝑥) . The information system 𝑨 = (𝑈, 𝐶) in Table I below,

 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}, 𝐶 = {𝑎1, 𝑎2}, 𝑉𝑎1 = {1, 2,3,4}, 𝑉𝑎2 = {1, 2,3,4}.

Table I. Information system A=(U,C)

U a1 a2

x1 1 2

x2 2 1

x3 2 2

x4 3 2

x5 3 2

x6 3 3

x7 3 4

x8 4 3

A Decision Table [S15] is a special case of an information system with the form

𝑨 = (𝑈, 𝐶 ∪ 𝐷), where 𝑑 ∈ 𝐷 is a decision attribute, called decision, and 𝑑 ∉ 𝐶, while each

𝑎 ∈ 𝐶 is called condition. The value set of 𝑑 is 𝑉𝑑. 𝑑 is also the class in a classification

problem. The value of decision 𝑑 in instance 𝑥 is denoted by 𝑑(𝑥).For example, the decision

table 𝑨 = (𝑈, 𝐶 ∪ 𝐷) in Table II below, 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8} , 𝐶 = {𝑎1, 𝑎2} ,

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

11

 𝐷 = {𝑑}, 𝑉𝑎1 = {1, 2,3,4}, 𝑉𝑎2 = {1, 2,3,4} and 𝑑 = {𝑦, 𝑛}, 𝑑(𝑥1) = 𝑦, 𝑑(𝑥5) = 𝑛.

Table II . Decision table A=(U,C∪D)

U a1 a2 d

x1 1 2 y

x2 2 1 y

x3 2 2 y

x4 3 2 y

x5 3 2 n

x6 3 3 n

x7 3 4 n

x8 4 3 n

2.2.2 Indiscernibility Relation

Indiscernibility relation is an equivalence relation mathematically, but the meaning is

different. When we say that two objects are indiscernible, we mean that the two objects have

exact the same value on every attribute and hence we cannot distinguish the two objects.

However, we still cannot say that the two objects are the same, due to the limit of knowledge

(attributes). A formal definition of indiscernibility relation is given below.

For every instance 𝑥, 𝑦 ∈ 𝑈 , 𝑥, 𝑦 are indecernable if and only if for every 𝑎 ∈ 𝐶 ,

𝑎(𝑥) = 𝑎(𝑦). For each subset 𝐶′ ⊆ 𝐶 , 𝐶′ makes a partition on 𝑈, denoted by 𝑈/𝐶′, and

𝐶′(𝑥) ∈ 𝑈/𝐶′ denotes the block of the partition containing instance 𝑥, which means 𝑥 ∈ 𝐶′(𝑥).

For each 𝑦 ∈ 𝐶′(𝑥), 𝑎(𝑦) = 𝑎(𝑥), which means that instances in the same block of partition

are indiscernible. 𝐶′ forms an indiscernibility relation and 𝐼(𝐶′) defines as follows:

𝑥 𝐼(𝐶′) 𝑦 if and only if 𝑎(𝑥) = 𝑎(𝑦) for every 𝑎 ∈ 𝐶′.

For example, consider the decision table in Table II above. All partitions are given below:

𝑈/𝐷 = {{𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥5, 𝑥6, 𝑥7, 𝑥8}},

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

12

𝑈/𝐶 = {{𝑥1}, {𝑥2}, {𝑥3}, {𝑥4, 𝑥5}, {𝑥6}, {𝑥7}, {𝑥8}},

𝑈/{𝑎1} = {{𝑥1}, {𝑥2, 𝑥3}, {𝑥4, 𝑥5, 𝑥6, 𝑥7}, {𝑥8}},

𝑈/{𝑎2} = {{𝑥2}, { 𝑥1, 𝑥3, 𝑥4, 𝑥5}, {𝑥6, 𝑥8}, {𝑥7}}.

2.2.3 Rough Set

The main difference between a rough set and a classic set is the appearance of a boundary

“region” (not just a boundary), as shown in Figure 3 (a), (b). Given a decision table A=(U,C∪

D), as shown in Table II, where U={x1,x2,x3,x4,x5,x6,x7,x8} is the universe or the training data,

C={a1,a2} is the condition or the attribute set of the training data, and D={d} is the decision or

the set of class labels of the training data. A rough set of d=y is shown in Figure 3 (c). Since

there is no difference between the condition of x4 and that of x5, they are in the boundary region.

The visualized rough set of 𝑨 = (𝑈, 𝐶 ∪ 𝐷) is shown in Figure 3 (c).

Figure 3. (a) Classic set. (b) Rough set. (c) Rough set for example.

We give an example to help understand a rough set. The set Y corresponding to the set of

d = y is {𝑥1, 𝑥2, 𝑥3, 𝑥4}, as shown in Figure 4 (a), where the set is mapped to a 4x4 data space

of 𝐶 = {𝑎1, 𝑎2}. If we want to define Y precisely through 𝐶, we find that elements 𝑥4 and 𝑥5

are indiscernible on 𝐶, or 𝑥4 𝐼(𝐶) 𝑥5, since both of them satisfy 𝑎1 = 3 𝑎𝑛𝑑 𝑎2 = 2, and

hence Y cannot be defined precisely through the known attributes. It is easy to see that

𝑥1, 𝑥2, 𝑥3 are certain to belong to Y. We are not sure if 𝑥4, 𝑥5 belong to Y or not, but we are sure

Out of the set

In the set

Out of the set

boundary

In the set

x
6
, x

7
, x

8

x

4
, x

5

 x
1
, x

2
, x

3

(a) (b) (c)

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

13

that 𝑥6, 𝑥7, 𝑥8 do not belong to Y. Hence we can characterize the set Y by two crisp set,

{𝑥1, 𝑥2, 𝑥3} 𝑎𝑛𝑑 {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, the lower-approximation and upper-approximation of Y,

respectively, as shown in Figure 4 (b) and (c). This example gives a sense to a rough set: A

rough set is actually a combination of several traditional sets (crisp sets).

 (a) (b) (c)

Figure 4. (a) The space of d=y. (b) The lower-approximation of d=y. (c) The upper-approximation of d=y.

Here we give a formal definition to a rough set. Consider a decision table 𝑨 = (𝑈, 𝐶 ∪

𝐷) , where 𝐷 forms a partition 𝑈/𝐷 and indiscernibility relation 𝐼(𝐷) . For each subset

𝐶′ ⊆ 𝐶, 𝐶′ forms a partition 𝑈/𝐶′ and indiscernibility relation 𝐼(𝐶′). When dealing with a

classification problem, 𝐼(𝐷) must be approximated by 𝐼(𝐶′). For each block of partition

𝑋 ∈ 𝑈/𝐷, the 𝐶′-lower approximation of 𝑋 is as follows:

𝐶′(𝑋) = {𝑥 ∈ 𝑈 ∶ 𝐶′(𝑥) ⊆ 𝑋}

The 𝐶′-upper approximation of 𝑋 is as follows:

𝐶′(𝑋) = {𝑥 ∈ 𝑈 ∶ 𝐶′(𝑥) ∩ 𝑋 ≠ ∅}

If 𝐶′(𝑋) = 𝐶′(𝑋), we say that 𝑋 is 𝐶′-definable. The rough set theory defines the set 𝑋 by

both 𝐶′(𝑋) and 𝐶′(𝑋). If 𝑋 is 𝐶′-definable, we say 𝑋 is crisp, otherwise 𝑋 is rough.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

14

The positive region of the partition 𝑈/𝐷 with respect to 𝐶′ is expressed as

𝑃𝑂𝑆𝐶′(𝐷), which is a union of every block’s lower-approximation of the partition 𝑈/𝐷. The

definition is given below:

𝑃𝑂𝑆𝐶(𝐷) = ⋃ 𝐶′(𝑋)

𝑋∈𝑈/𝐷

There are no contradicting data records in 𝑃𝑂𝑆𝐶′(𝐷). An example of a positive region is given

in Figure 5.

 (a) (b)

Figure 5. (a) The data space. (b) The positive region of U/D .

The dependency degree of 𝐷 respect to 𝐶′ is defined below:

𝛾𝐶′(𝐷) =
𝑐𝑎𝑟𝑑(𝑃𝑂𝑆𝐶′(𝐷))

𝑐𝑎𝑟𝑑(𝑈)

If 𝛾𝐶′(𝐷) =1 we said that 𝑨 is consistent on 𝐶′, which means that there are no contradicting

data records.

2.2.4 Reduct and Core

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), an attribute 𝑎 ∈ 𝐶 is said to be dispensable if

𝛾𝐶−{𝑎}(𝐷) = 𝛾𝐶(𝐷). A subset 𝐶′ ⊆ 𝐶 is a reduct of 𝐶 with respect to 𝐷 if no attribute

𝑎 ∈ 𝐶′ is dispensible. There can be more than one reduct of 𝐶, and the set of reducts is denoted

by 𝑅𝑒𝑑𝐶(𝐷). The core of 𝐶 with respect to 𝐷 is defined as below:

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

15

 𝐶𝑜𝑟𝑒𝐶(𝐷) = ⋂ 𝑅

𝑅 ∈ 𝑅𝑒𝑑𝐶(𝐷)

Consider the new example in Figure 6, where a new attribute 𝑎3 is given, and two

partitions are shown as follow:

𝑈/{𝑎1, 𝑎3} = {{𝑥1}, {𝑥2, 𝑥3}, {𝑥4}, {𝑥5}, {𝑥6, 𝑥7}, {𝑥8}}

𝑈/{𝑎2, 𝑎3} = {{𝑥2}, { 𝑥1, 𝑥3}, {𝑥4}, {𝑥5}, {𝑥6, 𝑥8}, {𝑥7}}

It is easy to understand that both {𝑎1, 𝑎3} and {𝑎2, 𝑎3} are reducts of the new decision

table, and {𝑎3} = {𝑎1, 𝑎3} ∩ {𝑎2, 𝑎3} is the core. Graphs for visualization are given in Figure 7

and Figure 8.

(a)

 (b) (c) (d)

Figure 6. (a) The new decision table with a3. (b) Data space of a3=1 . (c) Data space of a3=2. (d) Data space of

a3=3.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

16

Figure 7. a1, a3 as the reduct.

Figure 8. a2, a3 as the reduct.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

17

2.2.5 Indiscernibility Matrix

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), a discernibility matrix 𝑀𝐷(𝐶) of 𝑨 is a 𝑛 × 𝑛

matrix, and the entry of the matrix is defined as follows:

𝑐𝑖𝑗 = {𝑎 ∈ 𝐶 ∶ 𝑎(𝑥𝑖) ≠ 𝑎(𝑥𝑗) ∧ d(𝑥𝑖) ≠ 𝑑(𝑥𝑗)} 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

where 𝑛 is the number of elements in 𝑈 and 𝑥𝑖 , 𝑥𝑗 ∈ 𝑈.

Discernibility function 𝑓𝐷(𝑨) is defined as follows:

𝑓𝐷(𝐶) = ⋀{⋁ 𝑎 : 𝑎 ∈ 𝑐𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑐𝑖𝑗 ≠ ∅}

A discernibility function 𝑓𝐷(𝐴) is a boolean function, all constituents in the disjunctive

normal form of 𝑓𝐷(𝐶) are all 𝐷-reducts of 𝐶, and all prime implecants of the conjunctive

normal form of 𝑓𝐷(𝐶) are also all 𝐷-reducts of 𝐶.

An indiscernibility matrix of decision table in Figure 6 (a) is given in Figure 9 below.

Figure 9. An example of indiscernibility matrix.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

18

CHAPTER 3

DESIGN OF THE PROPOSED METHOD

3.1 Potential Boundary Region and Discernibility Power

One of the contributions of this thesis is presenting a new search heuristics named

discernibility power based on the rough set theory. Before introducing discernibility power,

we have to redefine the rough set for disambiguation and convenience.

Redefining a Rough Set

Guided by the original definition of rough set theory, we redefine a rough set. Given a

decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷), for each block X of partition 𝑈/𝐷, the rough set of X is

redefined below:

The positive region of X:

POSA (X) = {xC(x) X}.

The negative region of X:

NEGA (X) = {x | C(x) ∩ X=∅}.

The boundary region of X:

BOUNDA (X) = X POSA (X) NEGA (X).

Notice that the positive region here is the same as the definition of the lower-approximation of a

rough set, but it differs from the one mentioned in 2.2.3, which is the positive region of 𝐷

respect to 𝐶. As sketched in Figure 10, a rough set is redefined by 3 disjunctive traditional sets,

positive region, negative region and boundary region. The redefined rough set is also a

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

19

partition of 𝑼. The purpose of the redefinition is to connect the rough set theory with the

separate-and-conquer algorithm, which iteratively grows a rule by rejecting as many negative

data records as possible and accepting as many positive data records as possible. Based on the

redefinition of a rough set, we introduce two concepts: Potential boundary region (PotBound)

and discernibility power (DiscPow).

Figure 10. The redefined rough set.

Potential Boundary Region

Consider the rough set of 𝑋 defined above, the meaning of the potential boundary

region of attribute ai is the set of elements which will become indiscernible without ai. The

definition of PotBound of X with respect to attribute ai is given below:

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) = 𝐵𝑜𝑢𝑛𝑑𝑨′(𝑋) − 𝐵𝑜𝑢𝑛𝑑𝑨(𝑋),

where 𝑨 = (𝑈, 𝐶 ∪ 𝐷) and 𝑨′ = (𝑈, 𝐶 ∪ 𝐷 − {𝑎𝑖}).

Here is an example of PotBound. Consider sdfsff, the original decision table is 𝑨 =

(𝑈, 𝐶 ∪ 𝐷), if the attribute a2 is removed, the new decision table becomes 𝑨′ = (𝑈, 𝐶 ∪ 𝐷 −

{𝑎𝑖}). x6, x7 become indiscernible, and the boundary region of Y expands. The expanded part

of the boundary region {x6, x7} is the PotBound of a2.

negative

boundary

positive

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

20

Figure 11. (a) Decision table A' = (U,C∪D {a2}). (b) The new rough set of d=y.

Discernibility Power

The meaning of DiscPow of attribute 𝑎𝑖 is how many elements will become

indiscernible without 𝑎𝑖. The definition of DiscPow of 𝑎𝑖 with respect to the X is given

below:

𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) = 𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)).

Reuse the example above, the DiscPow of 𝑎1 with respect to 𝑌 is 2, or 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑌, 𝑎1) =

2.

DiscPow has the monotonicity property, which means that removing elements from a

rough set, or a partition of 𝑈, will never increase the DiscPow. Below is the proof.

Figure 12. The rough set of A = (U,C∪D).

𝑁𝐸𝐺𝑨(𝑋)

𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)

𝑃𝑂𝑆𝑨(𝑋)

U a1 a2 d

x1 1 2 y

x2 2 1 y

x3 2 2 y

x4 3 2 y

x5 3 2 n

x6 3 3 n

x7 3 4 n

x8 4 3 n

 (a) (b)

x8

 x4, x5, x6, x7

 x1, x2, x3

x6, x7, x8

x4, x5

 x1, x2, x3

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

21

Figure 13. The rough set of A' = (U,C∪D {a2})

Given a decision table 𝑨 = (𝑈, 𝐶 ∪ 𝐷) as shown in Figure 12, the DiscPow of 𝑎𝑖 ∈ 𝐶

with respect to the rough set of 𝑋 ∈ 𝑈/𝐷 is as below:

𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) = 𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)),

and the 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) is given below:

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) = 𝐵𝑜𝑢𝑛𝑑𝑨′(𝑋) − 𝐵𝑜𝑢𝑛𝑑𝑨(𝑋),

where 𝑨′ = (𝑈, 𝐶 ∪ 𝐷 − {𝑎𝑖}), as shown in Figure 13.

Below are definitions for 𝑋 with respect to 𝑨′:

The positive region of 𝑋:

𝑃𝑂𝑆𝑨′(𝑋) = {𝑥 | 𝐶(𝑥) 𝑋 }

The negative region of 𝑋:

𝑁𝐸𝐺𝑨′(𝑋) = {𝑥 | 𝐶(𝑥) ∩ 𝑋 = ∅ }

The boundary region of 𝑋:

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) = 𝑋 − 𝑃𝑂𝑆𝑨′(𝑋) − 𝑁𝐸𝐺𝑨′(𝑋)

By the 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) given above, the boundary region of 𝑋 has another

definition:

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) = 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) + 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋),

𝑁𝐸𝐺𝑨′(𝑋)

𝐵𝑂𝑈𝑁𝐷𝑨′(𝑋) = 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋) + 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)

𝑃𝑂𝑆𝑨′(𝑋)

𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋,𝑎𝑖) 𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

22

hence the rough set of 𝑋 is equal to { 𝑃𝑂𝑆𝑨′(𝑋) , 𝑁𝐸𝐺𝑨′(𝑋) , 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) ,

𝐵𝑂𝑈𝑁𝐷𝑨(𝑋)}, which is a partition of 𝑈. This indicates that any element 𝑒 removed from 𝑈

originally belongs to exactly one block of this partition. Since 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) =

𝐶𝑎𝑟𝑑(𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖)) , the only way to modify the value of 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) is

inserting or removing element from 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖). It is obvious that removing an

element from 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to drop, and inserting an

element into 𝑃𝑜𝑡𝐵𝑜𝑢𝑛𝑑𝑨(𝑋, 𝑎𝑖) will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to rise. Removing more

than one element from 𝑈 can be considered as iterally removing an element, and inserting

more than one element from 𝑈 can be considered as iterally inserting an element. By all

above, removing elements from 𝑈 will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to either hold or drop,

and inserting elements to 𝑈 will cause the 𝐷𝑖𝑠𝑐𝑃𝑜𝑤𝑨(𝑋, 𝑎𝑖) to either hold or rise, and this

is the monotonicity property of DiscPow.

Discernibility Power is one of the search heuristics of the proposed rule-based

algorithm: ROUSER, which will be introduced in the next subsection.

3.2 ROUSER

ROUSER follows the separate-and-conquer algorithm as the framework. Our

contribution here is connecting the proposed DiscPow as the search heuristic used by the

GROW function in the separate-and-conquer algorithm. The GROW function of ROUSER is

shown in Figure 14. ROUSER removes attributes whose values of DiscPow are zero in each

iteration, and it updates DiscPow of every attribute until all values of DiscPow of the remaining

attributes are not zero. If multiple attributes need to be removed, the current version of

ROUSER simply removes the one that is independent of the class entered as a parameter to

the separate-and-conquer algorithm in Figure 2. We use Chi-Squared value to decide the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

23

degree of independence. Chi-Squared value was first used in feature selection in [9]. Feature

selection with Chi-Square test together with rough set theory was proposed in [19].

Figure 14. The GROW function.

Once an attribute is removed in an iteration when the GROW function is running, we no

longer need to compute its DiscPow value anymore because of the monotonicity property of

DiscPow. When elements are removed from the rough set covered by current rule, the

DiscPow value of an attribute will be the same or a smaller value. Once the DiscPow value of

the attribute is zero, it will no longer increase and hence the attribute can be removed. The

DISCPOW function is shown in Figure 15.

Figure 15. The DISCPOW function.

 DISCPOW(ai,Covered):

decision table A=(U,C∪D)

let C' be C{ai}

for every elements xi and xj, i < j

if C' (xi) = C'(xj) ∧ D(xi) ≠ D(xj)

PotBound(ai) = PotBound(ai)⋃{xi , xj}

return the cardinality of PotBound(ai)

 GROW(Rule,Covered):

do:

for every attribute ai:

DiscPowi = DISCPOW(ai,Covered)

ChiSquaredi = CHISQUARED(ai ,Covered)

Among attributes with DiscPowi =0, ignore ai with

minimum ChiSquaredi

while exist ai with DiscPowi = 0

(a,v) = CHOOSE_ATTR&VALUE()

grow the rule with (a,v) as an antecedent

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

24

The CHOOSE_ATTR&VALUE function in GROW function searches for an

attribute-value pair, i.e. (ai ,vi), that will be used to grow a rule. We use the idea of purity value

[9][20] as the search heuristics. In our algorithm we provide 3 types of purities as options:

PurityOverAll, PurityPotBound, and PurityHybrid. The first is the same as the original

definition of purity, and the others are proposed by us. The definitions of these purities are

given below:

PurityOverAll = |pall|/(|pall|+|nall|),

where pall is the positive records covered by the candidate attribute and value, and nall is the

negative records covered by the candidate attribute and value;

PurityPotBound = |ppb|/(|ppb|+|npb|),

where ppb is the positive records in the potential boundary region of the candidate attribute, and

ppb is covered by the candidate attribute and value, and npb is the negative records in the

potential boundary region of the candidate attribute, and npb is covered by the candidate

attribute and value;

PurityHybrid = |ppb|/(|ppb|+|nall|),

where ppb is the positive records in the potential boundary region of the candidate attribute, and

ppb is covered by the candidate attribute and value; nall is the negative records covered by the

candidate attribute and value.

In addition to purity, we provide weighted Information Gain as an option for search

heuristic, which is defined as:

WInfoGain = (p2all/p1all)*(log(|p2all|/(|p2all|+|n2all|)) - log(|p1all|/(|p1all|+|n1all|)))

where p1all and n1all is the positive and negative records respectively from the original set of

data records, and p2all and n2all is the positive and negative records respectively from the

chosen subset of data records. The “log(|p1all|/(|p1all|+|n1all|))” is the information content of the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

25

original set of data records, while “log(|p2all|/(|p2all|+|n2all|))” is the information content of the

chosen subset. “(p2all/p1all)” is the weight of the Information Gain.

We also provide 2 methods, and the first is called “Max”, which finds the maximum (i.e.

purity) from all possible attribute-value pairs. The second is called “Frequent Max”, which

finds the most frequent value in each attribute and then finds the maximum (i.e. purity) from

them.

At last, our CHOOSE_ATTR&VALUE function can choose an attribute-value pair in 7

different ways:

1. PurityOverAll, Max

2. PurityPotBound, Max

3. PurityHybrid, Max

4. PurityOverAll, Frequent Max

5. PurityPotBound, Frequent Max

6. PurityHybrid, Frequent Max

7. WInfoGain, Max

ROUSER generates a set of rules for each class. As soon as a rule set is generated, it is

concatenated to the bottom of the rule list. The BUILD_CLASSIFIER algorithm of ROUSER is

shown in Figure 16. The class list is sorted by ascending frequency order as RIPPER does. For

an unseen case, ROUSER searches down the rule list and uses the first rule that covers the case

to classify it.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

26

ROUSER has to decide if two records are indiscernible to determine the boundary and

potential boundary regions. Consider the examples in Figure 17, where there are two records j

and k. If we want to know if record j and record k are indiscernible, we have to check every

attribute’s value. If each attribute has the same value in record j and k, we say that the two

records are indiscernible.

Figure 17. The example for checking if two records are indiscernible.

It is a simple task to decide if two records are indiscernible or not. However, missing

values make the task complicated. We define four types of indiscernibility between two values,

as shown in Table III, Table IV, Table V, and Table VI. These tables show how we treat a

missing value for an attribute when we try to check if two records are indiscernible. From

type 1 to type 4, the determination of indiscernibility becomes stricter. Currently, ROUSER

uses type 3 to find boundary region, and it uses type 1 to find potential boundary region. Part

of our study in the future is to consider other types of indiscernibility.

 BUILD_CLASSIFIER():

build a ClassList by ascending frequency order

for each Class in ClassList:

RuleSet=SEPERATE&CONQUER(Class,TrainData)

 concatenate the RuleSet to the bottom of the RuleList

return RuleList

Figure 16. The BUILD_CLASSIFIER function.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

27

Table III. Type 1 indiscernibility.

type 1
vj

missing α

vk

missing same same

α same same

β same diff

Table IV. Type 2 indiscernibility.

type 2
vj

missing α

vk

missing diff same

α same same

β same diff

Table V. Type 3 indiscernibility.

type 3
vj

missing α

vk

missing same diff

α diff same

β diff diff

Table VI. Type 4 indiscernibility.

type 4
vj

missing α

vk

missing diff diff

α diff same

β diff diff

Records with same conditions and different decisions are considered as contradictions.

Based on the four types of indiscernibility, there will be four types of contradictions.

ROUSER simply ignores the contradictions (type 3) in the training data.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

28

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED METHOD

4.1 WEKA

Weka[8] is an open source data mining software, which provides free Java code for

machine learning task. Weka is developed by and updated by the University of Waikato in

New Zealand. We use Weka 3.6.5 as our developing environment.

4.1.1 Import Data

Weka accepts several data formats, including the simplest format named

Comma-Separated Values (CSV), and Attribute Relationship File Format (ARFF). After data is

imported, it is stored by the Weka-defined data structures. Each data record is stored by an

Instance object, and the whole data set is stored by an Instances object, which contains

multiple Instance objects. An Attribute object contains all the details about an attribute, like

the data type is nominal or real number, and how many values are in the attribute. Multiple

Attribute objects are also contained in one Instances object.

4.1.2 Classifier

To develop a classifier under Weka’s environment, an abstract class

weka.classifiers.Classifier() must be extended. After that, an abstract method

buildClassifier() must be implemented, and this method is called every time when the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

29

classifier is invoked. This method builds up the classification model by learning from the

training data. After the model is built, one of the two methods is called for classifying testing

data: classifyInstance() and distributionForInstance(), which utilize the model built by

buildClassifier() to generate the classification result for every single data record. The

difference between these two functions is that, the former one returns exact one class label for

prediction, while the latter one returns an array of probabilities with respect to class labels.

4.1.3 Cross-Validation

Weka offers several evaluation methods, and they are easy to implement. Here we

introduce how to realize a cross-validation method. First an evaluator must be built by

invoking weka.classifiers.Evaluation(), and then we choose the provided method

crossValidateModel().

4.2 Data Structure

The data structure used in the implementation of ROUSER is partially learned from the

JRip provided by Weka.

4.2.1 Rough Set

In order to implement rough set intuitively, a data structure for rough set is built, as in

Figure 18. A data set is split as a partition of 3 blocks, namely positive, boundary and negative,

with respect to the definition of a rough set in Section 3.4, and each block is actually an

Instances object as mentioned in Section 4.1.1. For the convenience, the blocks filled by black

color is empty, while white is not empty. Some necessary information is stored in the structure,

such as DiscPow, Chi-square value, Purity For several further use, such as choosing the best

attribute and value to build a rule. This data structure never appears in Weka.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

30

Figure 18. The data structure of a rough set.

4.2.2 Decision Rule

As mentioned in Section 2.1.1, a decision rule is a logic statement with the following

form:

condition1 ∧ condition2 ∧…→class,

hence there can be multiple antecedents. We define a data structure named RAntd to store

each condition, and some necessary information is contained in the structure,, such as the

DiscPow, the number of instances covered by the rule so far (from the 1
st
 condition to this

condition), and the number of instances explained by the rule so far, as shown in Figure 19.

This data structure is learned from JRip provided by Weka, however some of the information

stored in it are different.

Figure 19. The data structure of the antecedent of a rule: RAntd.

Another structure learned from JRip provided by Weka is RouserRule, which stores a

rule, as in Figure 20, and it contains two parts: The queue of the antecedents and a class label.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

31

When a rule is grown, RAntd is generated one after another, and they are stored in a queue in

order.

Figure 20. The data structure of a rule: RouserRule.

After a rule is generated, it is stored in the rule set in the growing order, as shown in

Figure 21. The rule set is a queue. This is also learned from JRip provided by Weka.

Figure 21. A data structure of the rule set: m_Ruleset.

The whole data structure of the rule model built by ROUSER is shown in Figure 22:

Figure 22. The data structure of ROUSER’s rule model.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

32

4.3 ROUSER

Following the separate-and-conquer algorithm, ROUSER is implemented under the

Weka environment. As mentioned in Section 4.1.1, the BuildClassifier() function must be

implemented

4.3.1 BuildClassifier()

In the BuildClassifier() function shown in Figure 23, the oneClassRule() is an

implement of the separate-and-conquer algorithm, which build rules for one chosen class. The

oneClassRule() function is called for each class by ascending class order, since we adapt the

ascending ordered rules strategy here, which is also adapted by RIPPER.

Figure 23. The flow chart of BuildClassifier().

4.3.2 OneClassRule()

The function OneClassRule() shown in Figure 24 is an implement of the

separate-and-conquer algorithm. The training data is first transformed into a rough set of the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

33

chosen class, which split the original data into three parts, and we make the boundary region

empty to accelerate further processes. If there are contradicted instances in the data set, they

will be in the boundary region, and there are many methods to handle the contradictions, such

as assigning the most frequent class label to the contradicted instances. We choose t simple

method: Deleting the instances in the boundary region. After that we build a rule from the

rough set by the grow() function. The rule is concatenated at the end of the rule set right after

it is built. After a rule is built, the positive instances explained by the rule are removed from

the positive region. The remaining instances in the rough set will then be used to build another

rule iteratively until all instances are explained.

Figure 24. The flow chart of OneClassRule().

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

34

4.3.3 grow()

The grow() function shown in Figure 25 builds a rule that explains some of the positive

instances and none of the negative instances in the rough set. At the beginning an empty rule is

built. DiscPow and Chi-Squared value of each attribute are calculated, and the rule is enriched

by the antecedents built by the bestAntd() function. The longer the rule grows, the fewer the

negative instances are covered. The rule is finally done when none of the negative instances are

covered by the rule.

Figure 25. The flow chart of grow().

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

35

4.3.4 BestAntd()

BestAntd() chooses the best pair of attribute and value to grow the rule, and is the same as the

CHOOSE_ATTR&VALUE() function in the pseudo code in grow() function in Figure 14.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

36

CHAPTER 5

EXPERIMENT AND RESULTS

5.1 Environmental Setting

The experiment is executed on a computer with Windows7 32bit operating system. The

memory is 4GB DDR3 SDRAM 1333Mhz, and the chipset is Intel Q67 Express, the CPU is

Intel Core i7 -2600, 3.4GHz. The Weka’s version is 3.6.5.

5.2 Data Sets

The data sets used for experiments are all available from UCI Machine Learning

Repository [23], and the data sets which are originally nominal data are shown in Table VII,

and the discretized data sets which originally contain some real number data are shown in

Table VIII. They are collected from different application domains, such as biology, gaming,

politics, and marketing; the number of their attributes ranges from 5 to 69; the number of their

classes ranges from 2 to 24; since the class numbers are different in each data set, we use bar

charts to visualize the class distributions, for some of them, the class distributions are

imbalanced; and some data sets are with missing values on some attributes.

The data set names with the “_dis” concatenated behind are not pure nominal data

originally. We perform discretization on these data sets, and the details about what attributes are

discretized and how they are discretized are shown in Table IX.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

37

Table VII. Original nominal data sets.

Data name #instances
#attributes

including class
Class distribution

missing

value

Agaricus-lepiota 8124 23

yes

Audiology.standardized 226 69

yes

Car 1728 6

no

House-votes-84 435 16

yes

Kr-vs-kp 3196 36

no

Nursery 12960 8

no

Promotors 106 58

no

Splice 3190 61

no

Tic-tac-toe 958 9

no

Table VIII. Discretized data sets.

Data name #instances
#attributes

including class
Class distribution

missing

value

Abalone_dis 4177 9

no

Adult_dis 32561 15

no

Australian_dis 690 15

no

Balance-scale_dis 625 5

no

German_dis 1000 21

no

Hearts_dis 270 14

no

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

38

Table IX. Details of discretization.

Data name Supervised discretization
Equal bean discretization

(number of bean)
Numerical to nominal

Abalone 2,3,4,5,6,7,8 9(5)

Adults 1,5,11,12,13 3(10)

Australian 2,3,7,10,13,14 1,4,5,6,8,9,11,12,15

Balance-scale 1,2,3,4

German 2 5(10),13(10) 8,11,16,18,21

Heart 8,10 1(5),4(5),5(5) 2,3,6,7,9,11,12,13,14

We defined four types of contradictions in section 3.2, and the number of contradictions

in each data set is shown in Table X and Table XI.

Table X. Number of contradictions in original nominal data sets

Data sets Number of instances
Number of contradictions

type 1 type2 type3 type4

Agaricus-lepiota 8124 0 0 0 0

Audiology.standardized 200 0 0 0 0

Car 1728 0 0 0 0

House-votes-84 435 293 149 0 0

Kr-vs-kp 3196 0 0 0 0

Nursery 12960 0 0 0 0

Promoters 106 0 0 0 0

Splice 3190 2 2 2 2

Tic-tac-toe 958 0 0 0 0

Table XI. Number of contradictions in discretized data sets.

Data sets number of instances
Number of contradictions

type 1 type2 type3 type4

Abalone_dis 4177 3190 3190 3190 3190

Adult_dis 32561 4431 4431 4431 4431

Australian_dis 690 29 29 29 29

Balance-scale_dis 625 0 0 0 0

German_dis 1000 0 0 0 0

Hearts_dis 270 2 2 2 2

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

39

5.3 Results

We design several experiments to examine ROUSER’s performance in different

situations. We use 10-fold cross-validation to evaluate the classification performance.

The results for the data sets which are original nominal are summarized in Table XII.

The numbers reported in Table XII are accuracy rates in percentage, and the maximum values

are in bold, and the minimum values are underlined. As we mentioned in section 3.2 that

ROUSER has seven choices to search for the attribute-value pair to grow a rule, and the

results of all the seven choices are shown in Table XII. Four out of nine accuracy results of

ROUSER_6 are better than or the same as both J48 and JRip. On two data sets ROUSERs are

outperformed by JRip and J48. ROUSER_1 and ROUSER_6 are the most stable versions

among these seven versions, and their accuracy rates are comparable to J48 and JRip.

However, ROUSER does not perform well on the data sets car and splice. We think that there

are no optimization stage and pruning methods in ROUSER (but there are in RIPPER) and

overfitting occurs. The car data set is a data set with hierarchy structure which is easily

captured by a tree structure, and we think that this is the reason that J48 outperforms JRip and

ROSUER. The embedded feature selection method of ROUSER performs well on the splice

data set (as shown in experiment results later), but ROUSER itself does not perform well on

this data set. We think that this might be the overfitting problem. A deeper investigation of this

will be part of the future work.

We design an experiment to examine ROUSER’s capability to handle missing values. We

choose three data sets: Kr-vs-kp, Nursery, and Tic-tac-toe, to produce artificial data sets with

missing values. The missing values are distributed randomly in each attribute with the same

percentage (10%, 20%, 30%), while the distributions of missing values are different between

attributes. The class attribute has no missing values, and besides the class attribute, no

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

40

instances have all missing values. Missing values cause contradictions, and the number of

contradictions in each data set is shown in Table XIII.

Table XII. Results for original nominal data sets.

Data sets

Accuracy (%)

ROUSER
JRip J48

1 2 3 4 5 6 7

Agaricus-lepiota 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Audiology.standardized 78.0 75.5 77.0 77.5 76.5 77.0 76.5 71.5 77.5

Car 84.5 85.2 83.0 82.2 84.8 83.5 85.3 88.3 92.7

House-votes-84 93.3 94.5 93.1 94.5 94.5 94.7 93.8 95.6 96.3

Kr-vs-kp 99.2 99.3 99.5 91.9 99.3 99.6 99.4 99.2 99.5

Nursery 98.3 97.8 98.3 76.9 97.1 98.3 98.0 96.8 97.2

Promoters 80.2 83.0 74.5 75.5 84.0 84.0 79.3 82.1 81.1

Splice 83.0 82.6 79.2 82.0 83.2 80.3 84.4 93.8 94.2

Tic-tac-toe 96.9 91.8 96.1 91.7 94.2 97.2 96.8 97.7 85.8

Table XIII. Number of contradictions in artificial missing values in data sets.

Data sets total
number of contradictions

type1 type2 type3 type4

Kr-vs-kp 10% average 3196 604.8 451.9 0 0

Kr-vs-kp 20% average 3196 1865 830.4 0 0

Kr-vs-kp 30% average 3196 2892.5 574.1 0 0

Nursery 10% average 12960 11260.5 11198.8 155.6 0

Nursery 20% average 12960 12958.6 12958.4 289.5 0

Nursery 30% average 12960 12960 12960 636.8 0

Tic-tac-toe 10% average 958 214.2 196.2 0 0

Tic-tac-toe 20% average 958 693.9 620.5 0.4 0

Tic-tac-toe 30% average 958 928.4 876.5 1.2 0

The results are shown in Table XIV. The numbers reported in Table XIV are accuracy

rates in percentage, and except those of the original (0%) data sets, each accuracy rate is the

average accuracy rate of 10 different artificial data sets with the same rate of missing value.

The results indicate that the performances of ROUSER are similar to JRip in Kr-vs-kp

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

41

and Tic-tac-toe data sets, better than J48 in Tic-tac-toe data set, and worse than J48 in

Kr-vs-kp data set. The accuracy rate of ROUSER drops faster than JRip and J48 do in

Nursery data set when missing value percentage rises. We speculate that the Nursery data set

with missing values have too many type 3 contradictions, which will be ignored by ROUSER

as we mentioned in section 3.2, or there are too many type 1 contradictions and this makes

ROUSER miscalculate the potential boundary region. To address the problem, we may adapt

probability theory and assign contradicted instances to the class with higher probability.

Table XIV. Results for artificial missing values in data sets.

data sets
Accuracy (%)

ROUSER_1 ROUSER_6 JRip J48

Kr-vs-kp 0% (original) 99.2 99.6 99.2 99.5

Kr-vs-kp 10% average 91.2 90.6 91.2 94.0

Kr-vs-kp 20% average 85.5 84.8 84.3 88.6

Kr-vs-kp 30% average 78.1 78.0 78.8 84.1

Nursery 0% (original) 98.3 98.3 96.8 97.2

Nursery 10% average 56.5 57.1 83.8 88.3

Nursery 20% average 41.7 44.2 74.3 80.5

Nursery 30% average 39.2 40.0 66.4 73.7

Tic-tac-toe 0% (original) 96.9 97.2 97.7 85.8

Tic-tac-toe 10% average 86.4 86.3 89.2 79.8

Tic-tac-toe 20% average 80.1 79.6 80.9 73.1

tic-tac-toe 30% average 74.2 74.9 74.0 70.0

We design an experiment to examine the “ordered rules” strategy. ROUSER with

ascending order rules are compared with ROUSER with descending order rules. The

experimental results are given in Table XV. Each result is presented in two numbers, and the

upper number is the original accuracy with ascending order rules, and the lower number is the

difference after we switch to descending ordered rules. Ascending order is apparently better

than descending order only in the Audiology.standardized data set, which has 24 class labels

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

42

with imbalanced distribution. However descending order is better in the Car data set and the

accuracy becomes comparable with the accuracy of JRip and J48. Descending order is better

than ascending order in the Splice data set. However the accuracy is still not comparable with

the accuracy of JRip and J48. We observe that imbalanced multi-class data sets are sensitive

to the ordered rule strategy. A deeper investigation of this will be part of the future work.

Table XV. Results for ordered rule strategy.

Data sets
Accuracy (%)

1 2 3 4 5 6 7

Agaricus-lepiota
100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

Audiology.standardized
78.0 75.5 77.0 77.5 76.5 77.0 76.5

-7.0 -3.5 -5.5 -2.5 -3.5 -5.5 -2.5

Car
84.5 85.2 83.0 82.2 84.8 83.5 85.3

+6.0 +4.4 +7.2 +4.3 +4.9 +6.3 +5.3

House-votes-84
93.3 94.5 93.1 94.5 94.5 94.7 93.8

+1.6 -0.5 +0.2 0.0 -0.5 -0.7 -0.5

Kr-vs-kp
99.2 99.3 99.5 91.9 99.3 99.6 99.4

0.0 +0.1 -0.3 0.0 +0.1 -0.4 -0.1

Nursery
98.3 97.8 98.3 76.9 97.1 98.3 98.0

+0.3 -0.4 +0.4 0.1 0.0 +0.2 +0.3

Promoters
80.2 83.0 74.5 75.5 84.0 84.0 79.3

+2.8 +1.9 +10.4 +0.9 +0.9 +0.0 -1.0

Splice
83.0 82.6 79.2 82.0 83.2 80.3 84.4

+4.3 +4.0 +8.0 +0.6 +3.5 +5.3 +3.4

Tic-tac-toe
96.9 91.8 96.1 91.7 94.2 97.2 96.8

+0.2 +1.7 +2.5 +0.7 +0.4 +1.5 +1.4

We design an experiment to prove that Chi-Square value is useful in the rule growing

phase of ROUSER. In our original design, we adapt the Chi-Square value to reduce the

attributes iteratively. To make a contrast, we replace the Chi-Square value with Information

Gain, which is provided by Weka, and the results of the experiments on such a replacement are

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

43

given in Table XVI. The numbers reported in Table XVI are accuracy rates in percentage. Each

result is presented in two numbers, and the upper number is the original accuracy before we

replace Chi-Square value with Information Gain, and the lower number is the difference after

we do such a replacement. We discover that the performance of Chi-Square version is

obviously better than Information Gain version on the Audiology.standardized data set. The

performances on the Promoters data set which are originally bad become better after we

replace Chi-Square value with the Information Gain. However, the performances which are

originally good become worse. Our conclusion is that ROUSER_1 and ROUSER_6 with

Chi-Square feature selection are still more stable than all the other combinations.

Table XVI. Results of replacing Chi-Square value with Information Gain in ROUSER.

Data sets
Accuracy (%) with Information Gain feature selection

1 2 3 4 5 6 7

Agaricus-lepiota
100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

Audiology.standardized
78.0 75.5 77.0 77.5 76.5 77.0 76.5

-5.0 -3.0 -3.5 -5.5 -4.0 -3.5 -3.5

Car
84.5 85.2 83.0 82.2 84.8 83.5 85.3

+0.3 +0.2 +0.2 0.0 0.0 +0.1 -0.1

House-votes-84
93.3 94.5 93.1 94.5 94.5 94.7 93.8

+1.6 +1.1 +0.9 -0.9 +1.1 -0.2 -0.5

Kr-vs-kp
99.2 99.3 99.5 91.9 99.3 99.6 99.4

+0.2 -0.1 0.0 0.0 -0.1 -0.2 0.0

Nursery
98.3 97.8 98.3 76.9 97.1 98.3 98.0

+0.2 -0.1 +0.2 +1.4 +0.1 +0.1 0.0

Promoters
80.2 83.0 74.5 75.5 84.0 84.0 79.3

0.0 -4.7 +11.3 +8.5 -3.8 -5.7 +6.5

Splice
83.0 82.6 79.2 82.0 83.2 80.3 84.4

-0.3 -1.0 -1.1 -3.2 -1.6 -1.6 +0.5

Tic-tac-toe
96.9 91.8 96.1 91.7 94.2 97.2 96.8

+0.3 +0.6 0.0 -0.3 -0.6 0.0 0.0

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

44

The experimental results of the discretized data set are summarized in Table XVII. The

numbers reported in Table XVII are accuracy rates in percentage. The performances of

ROUSER on discretized data set are not as well as the performances in the original nominal

data sets, and we speculate the reason is that discretization may assign the same value to

different real numbers, and this may make instances indiscernible and be considered as

contradictions by ROUSER. As we mentioned before, ROUSER simply discards the

contradictions, and hence it shows poor performance on these discretized data sets.

Similarly, we can adapt probability theory and assign contradicted instances to the class

with higher probability. We can also design an embedded discretization method for ROUSER,

like what is done in JRip or J48, to handle real number data directly. From Table XI we

discover that there are many contradictions in Abalone_dis, Adult_dis, and Australian_dis

data sets, and hence ROUSER performs not as well as JRip and J48 on these data sets.

Table XVII. Results for discretized data sets.

Data sets

Accuracy (%)

ROUSER
JRip J48

1 2 3 4 5 6 7

Abalone_dis 74.2 71.6 73.5 71.4 69.8 72.4 74.9 77.2 77.6

Adult_dis 82.6 83.3 82.2 77.6 82.7 81.4 83.2 84.0 86.8

Australian_dis 82.0 78.3 81.2 79.7 79.1 77.1 80.7 85.8 86.2

Balance-scale_dis 74.1 73.9 73.8 56.2 72.8 72.6 73.0 73.8 63.2

German_dis 68.5 66.7 64.2 71.1 68.3 65.7 69.0 71.0 71.1

Hearts_dis 73.7 73.0 74.4 70.0 74.8 75.9 74.8 77.8 75.2

The execution time in millisecond of ROUSER, JRip and J48 are shown in Table XVIII.

We measure the training time of entire data set, instead of 10-fold. It is clear that tree-based

strategy overwhelms the separate-and-conquer strategy in execution time, and the reason is

simple: Unlike the tree-based strategy which ignores the data divided away, although the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

45

separate-and-conquer strategy “separates” positive data in each iteration of building a rule, it

needs all the negative data to stay in memory to complete this mission, and hence the same

negative data will be executed for several times.

There are two more reasons for ROUSER’s high execution time. First, DiscPow itself is

not so “greedy”. To explain this, we make a comparison with Information Gain, which is

adapted by C4.5 and RIPPER. When calculating the Information Gain for choosing an

attribute, only the attribute itself and the class attribute are involved in the calculation.

However, when calculating the DiscPow of an attribute, the whole decision table is involved,

since we need to compare all the values between each pair of records. Second, ROUSER has

no pruning methods and may build precise rules to explain only a few data records, and hence

too many rules are built and time is wasted.

Table XVIII. Training time.

Data sets

Training time (ms)

ROUSER
JRip J48

1 2 3 4 5 6 7

Agaricus-lepiota 68398 67689 72931 72715 68608 70509 69899 690 102

Audiology.standardized 4242 4048 4559 4187 4220 4411 3953 36 9

Car 7025 10240 7594 7524 10511 7369 8847 483 5

House-votes-84 212 236 268 226 233 270 275 4 2

Kr-vs-kp 57657 23548 58968 16565 23893 53409 34280 280 22

Nursery 598793 773254 636622 415997 826664 633169 840923 30428 26

Promoters 184 219 162 191 218 167 235 4 2

Splice 1003074 1364238 1441220 676261 1352105 1247409 701302 297 38

Tic-tac-toe 440 1442 1126 495 2166 573 528 31 3

If we consider only the calculation complexity, ROUSER_1~3 should be faster than

ROUSER_4~6, since searching for the MAX purity takes more time than searching for the

FREQUENT MAX purity. However, the results tell us a different story. The reason can be

discovered by examining the rule set size, as shown in Table XIX, where each rule set is built

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

46

from entire data set instead of data sets generated by the 10-fold cross-validation method.

Since the calculation of DiscPow is more complex than purity, and DiscPow will be

calculated several times when generating a rule, the rule set size dominates the execution time.

We also discover that JRip’s rule set size is usually smaller than ROUSER, and that is because

JRip adapts some pruning methods and optimization methods, and hence it makes the rule set

size smaller. Some rule set size are extremely high, while their accuracy is low, and this could

be considered as an overfitting problem, and we think this might be the reason why ROUSER

performs not well on Car and Splice data sets.

Table XIX. Rule set size.

Data sets

Rule set size

ROUSER
JRip J48

1 2 3 4 5 6 7

Agaricus-lepiota 12 11 12 12 11 11 11 8 24

Audiology.standardized 55 53 54 52 54 54 52 27 31

Car 230 265 229 230 270 229 230 97 131

House-votes-84 12 13 15 13 13 16 16 10 6

Kr-vs-kp 29 25 31 6 25 27 25 18 31

Nursery 588 671 569 389 829 569 585 317 359

Promoters 8 9 7 8 9 7 9 9 19

Splice 295 346 362 125 329 324 242 63 184

Tic-tac-toe 19 46 37 19 79 21 17 12 95

We design an experiment to prove the feature selection method embedded in ROUSER

is useful. The feature selection method is in the grow function of ROUSER, which iteratively

ignores an attribute with DiscPow=0 and the lowest Chi-Square value. This method selects

attributes for one class, and hence we perform the feature selection method on all classes and

union each result as the final result. We name it DiscPow_Chi method for convenience.

DiscPow_Chi is a deterministic feature selection method which returns a fixed number of

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

47

selected attributes and needs no additional threshold settings, while the Information Gain

method simply returns the rank of all attributes and an appropriate threshold is needed. Thus

we first choose CfsSubsetEval method together with BestFirst search method provided by

Weka, which is also a deterministic feature selection, as the comparison. We compare the

accuracy of JRip and J48 between the original data sets and the feature selected data sets. The

results of the experiment are shown in Table XX. In data sets car and nursery, CfsSubsetEval

method chooses only 1 attribute, which is obviously not able to represent the original data sets.

In data set splice, DiscPow_Chi selects half amount of attributes than CfsSubsetEval, while

the accuracy rates of both JRip and J48 are merely the same. In the data sets house-votes-84

CfsSubsetEval outperforms DiscPow_Chi by choosing fewer attributes while keeping the

high accuracy rate, and in the data set promoters CfsSubsetEval outperforms DiscPow_Chi

by higher accuracy rate. Both DiscPow_Chi and CfsSubsetEval failed in the tic-tac-toe data

set, but the problem of CfsSubsetEval is far more serious. To sum up, it is more possible for

DiscPow_Chi than for CfsSubsetEval to avoid accuracy loss.

We also make a comparison to Information Gain feature selection provided by Weka,

which ranks each attribute from high to low. We choose attributes with higher rank, and the

amount is the same with what DiscPow_Chi chose. The results are shown in Table XXI. On

data sets Agaricus-lepiota, Audiology.standardized and Kr-vs-kp, DiscPow_Chi performs

better than Information Gain feature selection, while Information Gain feature selection

performs better on the Promoters data set. The other results are similar. The accuracy results

show that DiscPow_Chi is no worse than Information Gain feature selection, but even better,

since DiscPow_Chi is deterministic, and save the work of determining the number of selected

attributes. The idea is very different between DiscPow_Chi and Information Gain feature

selection. DiscPow_Chi iteratively removes the attributes that we do not need, while the idea

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

48

of Information Gain feature selection is to select what we want.

Table XX. The comparison of DiscPow_Chi and CfsSubsetEval.

Data name Feature selection method
Number of

attributes selected

Accuracy

JRip J48

Agaricus-lepiota

none 22 100.0 100.0

DiscPow_Chi 5 100.0 100.0

CfsSubsetEval 4 99.0 99.0

Audiology.standardized

none 69 71.5 77.5

DiscPow_Chi 13 69.0 76.0

CfsSubsetEval 14 71.0 77.0

Car

none 6 88.3 92.7

DiscPow_Chi 6 88.3 92.7

CfsSubsetEval 1 70.0 70.0

House-votes-84

none 16 95.6 96.3

DiscPow_Chi 8 95.4 95.9

CfsSubsetEval 4 95.6 96.0

Kr-vs-kp

none 36 99.2 99.5

DiscPow_Chi 29 99.0 99.1

CfsSubsetEval 7 94.1 94.0

Nursery

none 8 96.8 97.2

DiscPow_Chi 8 96.8 97.2

CfsSubsetEval 1 71.0 71.0

Promoters

none 57 82.1 68.9

DiscPow_Chi 4 82.1 76.4

CfsSubsetEval 6 86.8 79.3

Splice

none 60 93.8 94.2

DiscPow_Chi 11 93.7 94.3

CfsSubsetEval 22 94.4 94.4

Tic-tac-toe

none 9 97.7 85.8

DiscPow_Chi 8 90.0 85.2

CfsSubsetEval 5 76.3 78.2

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

49

Table XXI. The comparison of DiscPow_Chi and Information Gain feature selection.

Data sets

Number

of

selected

attributes

Accuracy (%)

JRip J48

DiscPow_Chi InfoGain DiscPow_Chi InfoGain

Agaricus-lepiota 5/22 100.0 99.9 100.0 99.9

Audiology.standardized 13/69 69.0 66.5 76.0 70.5

Car 6/6 88.3 88.3 92.7 92.7

House-votes-84 8/16 95.4 95.6 95.9 95.2

Kr-vs-kp 29/36 99.0 96.7 99.1 97.2

Nursery 8/8 96.8 96.8 97.2 97.2

Promoters 4/57 82.1 84.0 76.4 84.0

Splice 11/60 93.7 95.2 94.3 94.5

Tic-tac-toe 8/9 90.0 91.3 85.2 85.3

5.4 Summary

The performance of ROUSER in accuracy is usually no worse and sometimes better

than that of JRip or J48. However, the time cost is high. ROUSER is sensitive to

contradictions which are originally in the data, since ROUSER simply ignores contradictions.

The embedded feature selection method is deterministic and more possible to avoid accuracy

loss. ROUSER has some good properties, and how to keep these good properties while

avoiding the shortcomings would be the focus of the feature work.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

50

CHAPTER 6

CASE STUDY

6.1 Introduction

The objective of this case study is to find out the cause of machine fault of a roughing

mill in a hot strip mill of the largest steel making company in Taiwan. First we will introduce

how to implement data mining techniques in a cooperative data analysis. Second we will

describe the background knowledge of the case study and make a brief explanation to the data.

Then we will show how we build up models and rules to analyze the cause of machine fault.

After that, we will look into the data and inspect the rules we built. Finally we will give a

conclusion about this case study.

6.1.1 Back Ground Knowledge

We first introduce the background knowledge about the manufacturing process. The

function of a hot strip mill is to turn a slab into a coil for the convenience of further process.

There are two hot strip mills, and the structures inside them are different. Our attention is on

one of the two hot strip mills. After a slab enters the hot strip mill, it must be heated up at the

furnace to become soft. A prepared slab will then enter the roughing mill. A roughing stand

contains two parts, the edge mill and the rough mill; the former adjusts the slab in a good

width, while the later thins the slab. After this, a slab becomes a transfer bar. The transfer bar

will be sliced into pieces by the crop shear, and finally it enters the finish mill and becomes a

coil after cooling.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

51

6.1.2 Problem

The problem occurs at the rough mill. The top and bottom working rolls of the rough

mill directly contact the slab when rolling, and the torque comes from the engines connected by

the spindle. In these recent years the spindles broke frequently, and the experts suspect that the

cause is that a slip happens during the rolling process. The rough mill rolls the slab back and

forth for 5 passes, and each rolling pass makes the slab thinner. A slip may occur in each

rolling pass, and the spindles may suffer unexpected impact and a slip may lead to metal

fatigue.

6.1.3 Data

The data collected from the mill can be roughly categorized into three types, namely the

materials, the mill, and the rolls.

Material Data

Material data contains the features about the material, such as the steel family, and the

steels in the same family have similar properties. The material data also contains the thickness

drafts of each pass performed by the rough mill.

Mill Data

Mill data comes from the mill itself. Some attributes like the moving speed of a slab are

not easily to measure directly, and hence the experts measure the rolling speed from the mill

to represent the slab moving speed; the speed draft of a slab is also a parameter setting of the

mill. The slab has a threading speed, which is the initial speed of threading. The running

speed is the speed right before the slab enters the mill. Only the default settings of these two

speeds are recorded. The roll torque of working rolls is generated by the motors of mill. The

roll force pressed on the slab is also generated by the motors of mill.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

52

Roll Data

There are two working rolls, top and bottom, and there are also plenty of measurement

results about the working rolls. Here we introduce the rolling torque only. The difference

between the roll torque and the rolling torque is that the roll torque is measured from the

motors of the mill while the rolling torque is measured from the working rolls themselves.

6.2 Model Building

6.2.1 Data Preprocessing

Data Cleaning

There are 21,907 data records and 187 attributes (excluding the class attributes) in the

original data set, which is collected from the hot strip mill for 2 months. After data cleaning,

including removing error data records, redundant attributes, duplicate attributes, serial

numbers, and time stamps, 21,891 data records and 172 attributes (excluding the class

attributes) remain.

Data Reformatting

Each data record is bound to a particular piece of material, which is originally a slab and

finally a coil, and hence data collected from 5 passes sticks together in one record. The static

information such as material data we introduced before is also included. Torque ratio of each

pass is also in one record. It is obvious that data in this format is not suitable for any

classification algorithm to analyze, so we reformat the original data set into 5 data sets based

on the pass number.

As we mentioned before, materials in the same family share similar physical properties,

and hence we divide the original data for each family. There are 27 families in the original

data set, and 5 passes for each record, and hence the original data set is reformatted into

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

53

27*5=135 data sets.

Data Discretization

Since the proposed ROUSER processes nominal data only, discretized data sets are

made from the 135 data sets. The discretized method is provided by Weka, and it is an

implementation of Fayyad & Irani's MDL method [6].

Data Integration: Torque Ratio

The torque ratio is the class attribute, and it is fused from the rolling torque we just

mentioned. The value of torque ratio can be used to determine a slip is happening or not. The

value range of torque ratio is [0, 1]. The safe range of pass 1 is (0.45, 0.55), and so is that of

pass 2; the safe range is (0.4, 0.6) for pass 3; and it is (0.35, 0.75) for passes 4 and 5. The

others are slip range.

Feature Selection

Some attributes are removed, and the reasons vary. Some of them are removed since

they are already known to be dependent on the class attribute, and this type of attributes will

dominate the results. However they are not helpful to explain the problem. Another reason of

why the attributes are removed is that the timing they are measured is after the slip happens.

Absolute time stamps and serial numbers are also removed.

Slip data records are rare in the final data sets.

6.2.2 Classification Algorithms

We use ROUSER to analyze the discretized data sets, and we use JRip and J48 provided

by Weka to analyze data sets with real numbers. We use the default setting of JRip (-F 3 -N 2.0

-O 2 -S 1) together with two more settings (-F 3 -N 1.0 -O 0 -S 1 -E, -F 3 -N 1.0 -O 0 -S 1 -E

-P). We also use the default setting of J48 (-C 0.25 -M 2) together with two more setting (-S

-C 0.5 -M 1, -S -C 0.25 -M 2). Since the slip records are rare in the data set, the default

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

54

settings of JRip and J48 may consider them as noise and ignore them to pursue the overall

accuracy; as a result, the models are too simple and explain nothing. So we try several

different settings to remove the mechanisms which are designed to prevent models from

growing too luxuriant and becoming over fitting.

6.3 Inspect the Result Rules

We generate many rule sets from 135 data sets with 3 algorithms and different settings,

and we give some of the rules. Following are the rules generated by J48 on the data set of family

27 at pass 5:

(R2 roll torque_pass5 [kNm]\[1] >= 3078.667) => Torque ratio p5=[0.65,1] (27.0/0.0).

(R2 roll torque_pass5 [kNm]\[1] >= 2585.333) and

(R2 total roll force_pass5 [kN]\[1] <= 23046.67) => Torque ratio p5=[0.65,1] (3.0/0.0).

The first rule indicates that if the torque value measured from the motors of mill for pass 5 is

bigger than or equal to 3078.667, then the torque ratio of pass 5 will be in the range [0.65,1],

which is a slip range. The second rule indicates that if the torque value measured from the

motors of mill for pass 5 is bigger than or equal to 2585.333, and the force value measured

from the motors of mill for pass 5 is smaller than or equal to 23046.67, then the torque ratio

of pass 5 will be in the slip range [0.65,1]. From these two rules we may conclude that when

torque measured from the motors of mill is too high, and sometimes when the force measured

from the motors of mill is too low, a slip may occurs.

Our job is to summarize the results and let the experts to inspect the results. We need

feedbacks from the experts to improve the experiments.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

55

Consider the rules provided above, the torque value measured from the motors of mill

for pass 5 attribute appears twice, and the force value measured from the motors of mill for

pass 5 appears once. The more frequent an attribute appears in the rules, the more important

the attribute is, especially when we built plenty of rules.

From all rule sets we discover one same phenomenon that the torque measured from the

motors of mill when biting in a slab is the most frequent attribute for passes 3, 4, and 5. The

rolling speed measured from the motors of mill is the second most frequent attribute for

passes 3, 4, and 5.

We also discover that some attributes never appear in any rule. This discovery may help

the experts to reduce dimensions when building a predictor.

The third most frequent attribute for passes 3 and 4 is the rolling speed of the top

working roll, which is preferred by JRip and J48, and the third most frequent attribute for

passes 5 is the bottom working roll number, which is preferred by ROUSER and never chosen

by JRip and J48. Both of these results are considered reasonable to experts. We discovered

that JRip and J48 prefer real number attributes and they may overlook some important

nominal attributes.

From the results we find that the default settings of running speed, threading speed,

force, and torque, are involved, while the thickness draft of each pass are not involved. We

look into the data to seek out the evidence of this discovery. First, we find that thickness draft

of each pass differs only a little in each data record, which may be the reason of why the

thickness is not involved. Second, we find that different records with exactly the same slab

properties (such as family) and the same size of finished products may have different settings

on the mill, and some setting combinations are rare with regard to the other records with the

same slab properties, and these rare settings are usually accompanied with slip. We considered

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

56

this phenomenon as one of the causes of slip.

6.4 Summary

Through data mining techniques we narrow the exploring range of the problem

happened in a rough mill. The attributes chosen by our experiments are considered reasonable,

and we find that JRip and J48 are good at capturing important real number attributes, while

ROUSER is good at capturing the important nominal attributes. The results also respond to

the experts’ doubts about the default settings. Following the narrowed clues, we look into the

data and find some evidences to explain that the default settings may be one cause of slip.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

57

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

A rule-based classification algorithm named ROUSER is proposed. It is designed to

process nominal data and generate human understandable decision rules. ROUSER uses a

rough set approach as its search heuristic, and the rule generation method of ROUSER is

based on the separate-and-conquer strategy.

As a prototype without the optimization stage or the pruning stage to reduce errors,

ROUSER still provides classification performance comparable to or even better than that

given by the rule-based or tree-based classification algorithms considered in experiments.

Since the search heuristics of ROUSER is totally different from the search heuristics (Entropy

and Information Gain) used by the other three algorithms, the results imply that the proposed

PotBound and DiscPow are useful. This also shows the potential of ROUSER and gives an

example of future work.

For future work, we plan to conduct more experiments, develop better strategies to

select attributes and handle contradictions, and apply ROUSER to data sets obtained from a

real-world case study.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

58

REFERENCE

[1] J. G. Bazan, H. S. Nguyen, S. H. Nguyen, P. Synak, J. Wróblewski, and blewski, "Rough

set algorithms in classification problem," in Rough set methods and applications, ed:

Physica-Verlag GmbH, 2000, pp. 49-88.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming: Athena Scientific,

1996.

[3] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 12th Int'l Conf. Machine Learning

(ICML), pp. 115-123, 1995.

[4] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, pp.

273-297, 1995.

[5] J. Dai, Q. Xu, and W. Wang, "A comparative study on strategies of rule induction for

incomplete data based on rough set approach," International Journal of Advancements in

Computing Technology, vol. 3, p. 176–183, 2011.

[6] U. M. Fayyad, K. B. Irani, “Multi-interval discretization of continuous-valued attributes

for classification learning”, presented at the Proceedings of 13th international joint

conference on Artificial intelligence, 1022-1027, 1993.

[7] J. Fürnkranz, "Separate-and-Conquer Rule Learning," Artif. Intell. Rev., vol. 13, pp. 3-54,

1999.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The

WEKA data mining software: an update," SIGKDD Explor. Newsl., vol. 11, pp. 10-18,

2009.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

59

[9] L. Huan and R. Setiono, "Chi2: feature selection and discretization of numeric attributes,"

in Tools with Artificial Intelligence, 1995. Proceedings of IEEE Seventh International

Conference on, 1995, pp. 388-391.

[10] J. C. Huhn and E. Hullermeier, "FR3: A Fuzzy Rule Learner for Inducing Reliable

Classifiers," Fuzzy Systems, IEEE Transactions on, vol. 17, pp. 138-149, 2009.

[11] W. Jiabing, Z. Pei, W. Guihua, and W. Jia, "Classifying Categorical Data by Rule-Based

Neighbors," in Data Mining (ICDM), 2011 IEEE 11th International Conference on, 2011,

pp. 1248-1253.

[12] X. Jin, A. Xu, R. Bie, and P. Guo, "Machine Learning Techniques and Chi-Square

Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles Data

Mining for Biomedical Applications." vol. 3916, J. Li, Q. Yang, and A.-H. Tan, Eds., ed:

Springer Berlin / Heidelberg, 2006, pp. 106-115.

[13] M. T. Mitchell, Machine Learning, 1997 :McGraw-Hill

[14] G. Pagallo and D. Haussler, "Boolean Feature Discovery in Empirical Learning,"

Machine Learning, vol. 5, pp. 71-99, 1990.

[15] Z. Pawlak, "Some Issues on Rough Sets,” Transactions on Rough Sets I, vol. 3100, J.

Peters, A. Skowron, J. Grzymala-Busse, B. Kostek, R. Swiniarski, and M. Szczuka, Eds.,

ed: Springer Berlin / Heidelberg, 2004, pp. 1-58.

[16] Z. Pawlak, A. Skowron, "Rudiments of rough sets", Information Sciences, vol.177,

no.1, pp.3-27, 2007.

[17] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, pp. 81-106,

1986.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

60

[18] J. R. Quinlan, C4.5: programs for machine learning: Morgan Kaufmann Publishers Inc.,

1993.

[19] J. Stefanowski and K. Slowiński, "Rough Set Theory and Rule Induction Techniques For

Discovery of Attribute Dependencies in Medical Information Systems,” Principles of

Data Mining and Knowledge Discovery. vol. 1263, J. Komorowski and J. Zytkow, Eds.,

ed: Springer Berlin / Heidelberg, 1997, pp. 36-46.

[20] S. M. Weiss and N. Indurkhya, "Reduced complexity rule induction," presented at the

Proceedings of the 12th international joint conference on Artificial intelligence - Volume

2, Sydney, New South Wales, Australia, 1991.

[21] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan, A.

Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand, and D. Steinberg, "Top 10

algorithms in data mining," Knowledge and Information Systems, vol. 14, pp. 1-37,

2008.

[22] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338–353, 1965.

[23] Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

[24] "Data Mining Curriculum". ACM SIGKDD. 2006-04-30. Retrieved 2011-10-28.

