國立政治大學應用數學系碩士學位論文

有關對立圆形的探討

Some Problems on Opposition Graphs

碩士班學生：潘丞偉撰
指導教授：張宜武博士
中華民國102年1月10日

Contents

Abstract ii
中文摘要 iii
1 Introduction 1
2 Definitions 3
3 Some Opposition Graphs 政 治7
$3.1 \quad R(T)=\emptyset$ 8
3．2 There Are Only One Vertex u in R 11
3．3 There Are Two Vertices u, v in $R(T)$ 16
3．4 There Are More Than Two Vertices in R 22
4 Some Families of Opposition Graphs 24
5 Open Problems and Further Directions of Studies 28
References29

Abstract

In this thesis, we use the number of vertices with degree greater than or equal to 3 as a criterion for trees being opposition graphs. Finally, we prove some families of graphs such as $\overline{P_{n}}, C_{n}$ with $n \geq 3$ and $n=$ $4 k, k \in \mathbb{N}$ are opposition graphs and some families of graphs such as $\overline{T_{n}}$, C_{n} with $n \geq 3$ and $n \neq 4 k, k \in \mathbb{N}$ are not opposition graphs. keywords: Opposition Graphs.

中文摘要

在這篇論文中，我們探討對立圖形的特性，並藉由度數大於等於三的點，判斷一樹是否為對立圖形，最後證明 $\overline{P_{n}}, C_{n} n \geq 3$ 且 $n=4 k, k \in \mathbb{N}$ 家族的圖是對立圖形且 $\overline{T_{n}}, C_{n} n \geq 3$ 且 $n \neq 4 k, k \in \mathbb{N}$家族的圖是對立圖形。

關鍵詞：對立圖形

1 Introduction

From the book [1], they introduce many containment relationships between classes of graphs. In Figure 1, we can see the relations between opposition graphs and threshold graphs, and the relations between opposition graphs and perfect graphs. For example, P_{4} is an opposition graph but not a threshold graph; C_{6} is a perfect graph but not an opposition graph. Now we put our attention on the opposition graphs, we want to know what kind of graphs are opposition graphs.

By [2] and [3], we define a graph $G(V, E)$, where $V=V(G)$ is the vertex set and $E=E(G)$ is the edge set. Therefore, in chapter 2, we introduce some basic definitions and theorems. In chapter 3 , we give a set R which is the set of vertices with degrees greater than or equal to 3. In section 3.1, we discuss the case when R is empty, then we create some ways to give an orientation to a path. In section 3.2 , we discuss the case that there is only one vertex in R, then we create a way to give an orientation to a rooted tree. In section 3.3, we discuss the case that there are two vertices in R. In section 3.4, we discuss that there are more than two vertices in R, and find out the minimum obstruction for the class of opposition graphs. In chapter 4, we prove some families of graphs such as $\overline{P_{n}}, C_{n}$ with $n \geq 3$ and $n=4 k, k \in \mathbb{N}$ are opposition graphs and some families of graphs such as $\overline{T_{n}}$, C_{n} with $n \geq 3$ and $n \neq 4 k, k \in \mathbb{N}$ are not opposition graphs. Finally, we bring up some open problems and further directions of research.

Figure 1: A complete hierarchy of classes of perfect graphs.

2 Definitions

In this chapter, we mention some basic definitions about graphs and trees.
For most of them, we follow [2] and [3]. A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices. Sometimes the edge are ordered pairs of vertices, called directed edges, the ordered pairs of vertices is called a direction.

A directed graph or digraph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a function assigning each edge an ordered pair of vertices. The first vertex of the ordered pair is the tail of the edge, and the second is the head; together, they are the endpoints. We say that an edge is an edge from its tail to its head.An orientation of a graph G is a digraph D obtained from G by choosing an orientation $(u \rightarrow v$ or $v \rightarrow u)$ for each edge $u v \in G$.

The degree of vertex v is the number of incident edges.
A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$ and the assignment of end points to edges in H is the same as in G. An induced subgraph is a subgraph obtained by deleting a set of vertices. The complement \bar{G} of a simple graph G is the simple graph with vertex set $V(G)$ defined by $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$.

A path P is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list. A path with n vertices is call P_{n}. A cycle C is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle. A cycle with n vertices is call C_{n}. A graph with no cycle is acyclic. If G is a u, v-path, then the distance from u to v, written $d(u, v)$, is the least length of u, v-path. A graph G is connected if it has a u, v-path whenever $u, v \in V(G)$.

A tree is a connected acyclic graph. One can define a tree as a graph with a designated vertex called a root such that there is a unique path from the root to any other vertex in the tree. If a tree is unoriented, then any vertex can be the root.

A leaf is a vertex of degree 1. The level number of a vertex x in a tree T is the length from the root u to x. The height of a tree is the length of the longest path form root, equivalently, the largest level number of any vertex.

Figure 2: A tree

For any vertex x in a tree T, except the root, the parent of x is the vertex y with an edge from y to x, the children of x is the vertex z with an edge from x to z. The parent-children relationship extends to ancestors and descendants.

Figure 3: y is the parent of $x ; z$ are the children of $x ; y$ is an ancestor of $z ; z$ are the descendants of y.

Note the difference between "maximal" and "maximum". As adjectives, maximum means "maximum-sized", and maximal means "no larger one contains this one".

Example 2.1. In Figure 4, the path $v_{1}-v_{2}-v_{3}-v_{4}$ is a maximum path and a maximal path. The path $v_{1}-v_{2}-v_{5}$ is a maximal path but not a maximum path.

Definition 2.2. A graph G is called an opposition graph if we can give an orientation of its edge such that in every induced P_{4}, the two end edges both either point inwards or outwards.

We know that if G is an opposition graph, then every induced P_{4} must be shown as Figure 5

Figure 5: An orientation

Example 2.3. The graph C_{8} is an opposition graph shown as Figure 6.

Figure 6: The graph C_{8} is an opposition graph.

Example 2.4. In the graph C_{5}, we can give an orientation for C_{5}. If the direction for the edge $v_{1} v_{2}$ is $v_{1} \rightarrow v_{2}$, we must have the following directions: $v_{4} \rightarrow v_{3}, v_{5} \rightarrow$ $v_{1}, v_{3} \rightarrow v_{2}$, then there are no direction for the edge $v_{4} v_{5}$. Similar for the direction for the edge $v_{1} v_{2}$ is $v_{2} \rightarrow v_{1}$. Hence, the graph C_{5} is not an opposition graph shown as Figure 7.

Figure 7: The graph C_{5} is not an opposition graph.

Definition 2.5. A graph G is called a threshold graph if it does not contain a P_{4}, C_{4}, and $\overline{C_{4}}$ as induced subgraphs.

Proposition 2.6. If a graph G is a threshold graph, then G is an opposition graph.

Proof. If G is a threshold graph, then G has no induced P_{4}. Hence, G is an opposition graph.

3 Some Opposition Graphs

In this chapter, we will discuss relations between opposition graphs and trees. Let T be a tree. Let $R(T)=\{x \in v(T) \mid \operatorname{deg}(x) \geqslant 3\}$, we have the following four cases :

Case $1 R(T)=\emptyset$.
Case 2 There is only one vertex u in $R(T)$.
Case 3 There are two vertices u, v in $R(T)$.
Case 4 There are more than two vertices in $R(T)$.
For a tree T, we will show that T is an opposition graph if and only if any two vertices in $R(T)$ have even distance. We also find the minimal obstruction for trees as opposition graphs.

$3.1 \quad R(T)=\emptyset$

In this section, we discuss the case $R(T)=\emptyset$. Every vertex in the tree T has only degree 1 or 2 , so T is a path P_{n}.

Theorem 3.1. The path P_{n} is an opposition graph.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}. We can give an orientation of P_{n} as follows :

$$
\begin{aligned}
& v_{i} \rightarrow v_{i+1} \text { for all } i=4 k, 4 k+1 \text {, where } k \in \mathbb{N} \text { and } i<n . \\
& v_{i+1} \rightarrow v_{i} \text { for all } i=4 k+2,4 k+3, \text { where } k \in \mathbb{N} \text { and } i<n .
\end{aligned}
$$

Then P_{n} is an opposition graph shown as Figure 8.

Definition 3.2. Let G be an opposition graph. The orientation of G which satisfy the definition of opposition graphs is called the oppositional orientation.

Theorem 3.3. There are only four oppositional orientations of P_{n} :

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}.

Case 1 If the direction between v_{1} and v_{2} is $v_{1} \rightarrow v_{2}$, then we must have the following directions: $v_{i} \rightarrow v_{i+1}$ for all $i=4 k+1$, where $k \in \mathbb{N}$ and $i<n$.
$v_{i+1} \rightarrow v_{i}$ for all $i=4 k+3$, where $k \in \mathbb{N}$ and $i<n$.

Then we have two subcases:
subcase 1 The direction between v_{2} and v_{3} is $v_{2} \rightarrow v_{3}$, then we have the following directions:

$$
\begin{aligned}
& v_{i} \rightarrow v_{i+1} \text { for all } i=4 k+2, \text { where } k \in \mathbb{N} \text { and } i<n \\
& v_{i+1} \rightarrow v_{i} \text { for all } i=4 k+4, \text { where } k \in \mathbb{N} \text { and } i<n
\end{aligned}
$$

subcase 2 The direction between v_{2} and v_{3} is $v_{3} \rightarrow v_{2}$, then we have the following directions:

$$
\begin{aligned}
& v_{i} \rightarrow v_{i+1} \text { for all } i=4 k+4, \text { where } k \in \mathbb{N} \text { and } i<n \\
& v_{i+1} \rightarrow v_{i} \text { for all } i=4 k+2, \text { where } k \in \mathbb{N} \text { and } i<n
\end{aligned}
$$

Case 2 If the direction between v_{1} and v_{2} is $v_{2} \rightarrow v_{1}$, then we must have the following directions:
$v_{i} \rightarrow v_{i+1}$ for all $i=4 k+3$, where $k \in \mathbb{N}$ and $i<n$.
$v_{i+1} \rightarrow v_{i}$ for all $i=4 k+1$, where $k \in \mathbb{N}$ and $i<n$.
Then we have two subcases:
subcase 1 The direction between v_{2} and v_{3} is $v_{3} \rightarrow v_{2}$, then we have the following directions:
$v_{i} \rightarrow v_{i+1}$ for all $i=4 k+4$, where $k \in \mathbb{N}$ and $i<n$.
$v_{i+1} \rightarrow v_{i}$ for all $i=4 k+2$, where $k \in \mathbb{N}$ and $i<n$.
subcase 2 The direction between v_{2} and v_{3} is $v_{2} \rightarrow v_{3}$, then we have the following directions:
$v_{i} \rightarrow v_{i+1}$ for all $i=4 k+2$, where $k \in \mathbb{N}$ and $i<n$.
$v_{i+1} \rightarrow v_{i}$ for all $i=4 k+4$, where $k \in \mathbb{N}$ and $i<n$.

Theorem 3.3 told us that there are only four oppositional orientations D_{1}, D_{2}, D_{3} and D_{4} for a path. We can choose any one of these four oppositional orientations to give an orientation for a path.

3.2 There Are Only One Vertex u in R

If there is only one vertex u in $R(T)$, then T must be the tree shown as Figure 10, we call it sunshine graph. We will discuss whether T is an opposition graph.

Theorem 3.4. If T is a sunshine graph, then T is an opposition graph.

Proof. Let $u \in R(T)$ be the root of T. We can give an orientation for the edges of T as follows :

Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Then T is an opposition graph shown as Figure 11.

Theorem 3.5. For a sunshine graph T. Let u be the root of T. If there are at least two vertices in level 2, then there are only two oppositional orientations for a sunshine graph T.

Proof. Let T be a sunshine graph. Let $u \in R(T)$ be the root of the tree T. There are n paths from u to leaves $Q_{1}, Q_{2}, \ldots, Q_{n}$. By Theorem 3.3, there are only four oppositional orientations for a path.
case 1 If the orientation of Q_{1} is D_{1}, then the orientation of Q_{2}, \ldots, Q_{n} must be D_{1}. Hence, the orientation of T is level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$ and level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.
case 2 If the orientation of Q_{1} is D_{2}, then the orientation of Q_{2}, \ldots, Q_{n} must be D_{2}. Hence, the orientation of T is level $i+1 \rightarrow$ level i for all $i=4 k, 4 k+1$, and
level $i \rightarrow$ level $i+1$ for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Suppose the vertices of level 1 in Q_{1}, Q_{2}, Q_{3} are v_{11}, v_{12}, v_{13}, and suppose the vertices of level 2 in Q_{1}, Q_{2}, are v_{21}, v_{22}.
case 3 If the orientation of Q_{1} is D_{3}, then the directions of T must be $v_{12} \rightarrow u$, $v_{12} \rightarrow v_{22}, v_{13} \rightarrow u$. Hence, the orientation of the path $v_{13} u v_{12} v_{22}$ gives us a contradiction.
case 4 If the orientation of Q_{1} is D_{4}, then the directions of T must be $u \rightarrow v_{12}$, $v_{22} \rightarrow v_{12}, u \rightarrow v_{13}$. Hence, the orientation of the path $v_{13} u v_{12} v_{22}$ gives us a contradiction.

So there are only two oppositional orientations for a sunshine graph T.

By Theorem 3.5, we can give another orientation of edges of T as follows :

Level $i \leftarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Level $i+1 \leftarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Then T is an opposition graph shown as Figure 12.
Corollary 3.6. For a sunshine graph T. Let u be the root of T. If there are at least two vertices in level 2, then the orientation of T must be given as follows:

Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l$, l is the height of T.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l$, l is the height of T.

Proof. By Theorem 3.5, there are two orientations for T, these two orientations are symmetric, so we can use case1 to give the orientation for T.

Figure 12: An sunshine graph is an opposition graph.

Theorem 3.7. For a tree T. Let u be the root of T. If there are at least two vertices in level two and T is opposition, then the orientation of T must be given as follows:

Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l$, l is the height of T.

Proof. Let T be a tree. Suppose $R(T)=\left\{u, u_{1}, u_{2} \ldots u_{n}\right\}$. There is a maximal subtree T_{1} containing u which is a sunshine graph. Then T can be decomposed into T_{1} and some paths $Q_{1}, Q_{2}, \ldots, Q_{k}$ with one of endpoints in $R(T)$.

Because T_{1} is a sunshine graph, the orientation is given by Corollary 3.6. Now we add all paths Q_{i} into T_{1}. Suppose u_{j} is an endpoint of Q_{i}. Then $u u_{j}$ union Q_{i} is a path, the orientation of this path is given by case 1 of Theorem 3.3. Hence, the orientation of T must be given as follows:

Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Now, by Theorem 3.7, when we want to determine if a tree T is an opposition graph, we can give the orientation by only one way: Let $u \in R(T)$ be the root. Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$ and level $i+1 \rightarrow$ level i for all $i=4 k+2$, $4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T. When the orientation is given as above, if some induced P_{4} doesn't satisfy the definition of opposition graphs, then T is not an opposition graph.

3.3 There Are Two Vertices u, v in $R(T)$

If there are exactly two vertices u and v in $R(T)$, then T must be the tree shown as Figure 13, we call it wing graph. We will discuss whether T is an opposition graph.

Figure 13: T is a wing graph.

Now, if we delete all the vertices between u and v, then we can get two subtrees containing u and v, we call them T_{1} and T_{2}. Observably, the degrees of u and v are greater than or equal to 2 . The trees T_{1} and T_{2} are paths or sunshine graphs because the degrees of every vertices are less than 3 except u and v.

Theorem 3.8. Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{1} and T_{2} be the subtrees from deleting the vertices between u and v. If at least one of T_{1} and T_{2} does not contain P_{4}, then T is an opposition graph.

Proof. Suppose T_{2} does not contain P_{4} and v is in T_{2}. Let u be the root of the tree T. We can give an orientation of edges of T as follows :

政 回
Figure 14: The graph of Theorem 3.8.

Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3, k \in \mathbb{N}$ and $i<l, l$ is the height of T.

Then T is an opposition graph shown as Figure 15.

Figure 15: The orientation of Theorem 3.8.

Theorem 3.9. Let T be a tree and $v \in R(T)$. There are n paths $Q_{1}, Q_{2}, \ldots, Q_{n}$ with endpoint v. Let $v_{11} \in Q_{1}, v_{12} \in Q_{2}, \ldots, v_{1 n} \in Q_{n}$ be the vertices whose distance from v is 1. Let $v_{21} \in Q_{1}, v_{22} \in Q_{2}, \ldots, v_{2 n} \in Q_{n}$ be some vertices whose distance from v is 2. If T is an opposition graph, then the directions of the edges $u v_{1 i}$ and $v_{1 i} v_{2 i}$ must be as follows:

Case 1 The directions are $v \rightarrow v_{1 i}$ for all $i=1, \ldots, n$ and $v_{1 i} \rightarrow v_{2 i}$ for all $i=$ $1, \ldots, n$.

Case 2 The directions are $v_{1 i} \rightarrow v$ for all $i=1, \ldots, n$ and $v_{2 i} \rightarrow v_{1 i}$ for all $i=$ $1, \ldots, n$.

Proof. T is a tree. Let $u \in R(T)$ be the root of T. Suppose the path Q_{1} is between u and v. By Theorem 3.7, we give an orientation for T, there are two cases in the edge between v_{11} and v_{21} :

Case 1 If we give the direction $v_{11} \rightarrow v_{21}$, then the directions of the edges $u v_{1 i}$ and $v_{1 i} v_{2 i}$ is $v \rightarrow v_{1 i}$ for all $i=2, \ldots, n, v_{1 i} \rightarrow v_{2 i}$ for some $i=2, \ldots, n$, and $v \rightarrow$ v_{11}.

Case 2 If we give the direction $v_{21} \rightarrow v_{11}$, then the directions of the edges $u v_{1 i}$ and $v_{1 i} v_{2 i}$ is $v_{1 i} \rightarrow v$ for all $i=2, \ldots, n, v_{2 i} \rightarrow v_{1 i}$ for some $i=2, \ldots, n$, and $v_{11} \rightarrow$ v.

So there are only two cases for the directions of the edges $u v_{1 i}$ and $v_{1 i} v_{2 i}$.

Figure 16: The orientation of Theorem 3.9.

Theorem 3.9 can give us a way to determine if T is an opposition graph. For a tree T, by Theorem 3.7, we can give an orientation, then the orientation of every vertex u in $R(T)$ must satisfy Theorem 3.9. If the orientation of any vertex u in $R(T)$ doesn't satisfy Theorem 3.9, then T is not an opposition graph.

Then we will discuss that both T_{1} and T_{2} contain P_{4}. We have the following two cases :

Case 1 If $\operatorname{dist}(u, v)$ is odd.
Case 2 If $\operatorname{dist}(u, v)$ is even.

Theorem 3.10. Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{1} and T_{2} be the subtrees from deleting the vertices between u and v. If both T_{1} and T_{2} contain P_{4} and dist (u, v) is odd, then T is not an opposition graph.

Proof. Suppose u is in T_{1} and v is in T_{2}. Let u be the root of the tree T. We can give an orientation of edges of T by Corollary 3.7. Then the orientation of T is shown as Figure 17. The orientation of T_{2} doesn't satisfy Theorem 3.9, so T is not an opposition graph.

Theorem 3.11. Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{1} and T_{2} be the subtrees from deleting the vertices between u and v. If both T_{1} and T_{2} contain P_{4} and dist (u, v) is even, then T is an opposition graph.

Proof. Let u be the root of the tree T. We can give an orientation of edges of T by Corollary 3.7. Then the orientation of T is shown as Figure 18, so T is an opposition graph.

$$
d(u, v)=4 k+1
$$

Figure 17: The orientation of Theorem 3.10.

Figure 18: The orientation of Theorem 3.11.

3.4 There Are More Than Two Vertices in R

Theorem 3.12. Let T be a tree. Let $R(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices in T whose degree is greater than or equal to 3. If $d\left(v_{i}, v_{i+1}\right)$ is even for all $i=1, \ldots, n$, then T is an opposition graph.

Proof. We use the induction on $R(T)$ to prove the statement. Let T be a tree and $R(T)=\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ be the set of vertices in T which degree is greater than or equal to 3 .

Basic step Suppose $n=2$. By Theorem 3.11, T is an opposition graph.
Induction step Suppose $n>2$. Let v_{1} be the root of the tree T. Suppose $\operatorname{dist}\left(v\left(i, v_{1}\right) \leq \operatorname{dist}\left(v_{j}, v_{1}\right)\right.$ for all $i<j$. Let T_{n} be the subtree of T whose vertex set $V\left(T_{n}\right)$ are v_{n} and all of its descendant. Let T^{\prime} be the subtree of T whose vertex set $V\left(T^{\prime}\right)$ are $\left\{v_{n}\right\} \cup V(T)-V\left(T_{n}\right)$. Now, $\left|R\left(T^{\prime}\right)\right|=n-1$, so T^{\prime} is an opposition graph by induction hypothesis.
Let v_{1} be the root of T^{\prime}. We can give an orientation to T^{\prime} :
Level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T^{\prime}.

Level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T^{\prime}.

Then we give the orientation for T_{n} and add T_{n} to T^{\prime}. Let v_{n} be the root of T_{n}. There are two cases in T_{n} :
case 1 If $d\left(v_{1}, v_{n}\right)=4 k$, then level $i \rightarrow$ level $i+1$ for all $i=4 k, 4 k+1$ and level $i+1 \rightarrow$ level i for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l, l$ is the height of T.
case 2 If $d\left(v_{1}, v_{n}\right)=4 k+2$, then level $i+1 \rightarrow$ level i for all $i=4 k, 4 k+1$ and level $i \rightarrow$ level $i+1$ for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<l$, l is the height of T.

Hence, T is an opposition graph for $n>2$.

Definition 3.13. Let the path $u_{1} u_{2} u_{3} u_{4}$ and $v_{1} v_{2} v_{3} v_{4}$ be two P_{4}. We add an odd path between u_{2} and v_{2}, the graph is called H graph shown as Figure 19.

Theorem 3.14. If T be an H graph, then T is a minimal obstruction for the class of opposition graphs.

Proof. If we remove u_{1}, then there is only one vertex v_{2} which degree is greater than or equal to 3 , by Theorem 3.4, T is an opposition graph. If we remove u_{4}, the path $u_{1} u_{2} u_{3}$ is a P_{3}, then by Theorem 3.8, T is an opposition graph. Similar for the vertices v_{1} and v_{4}.

4 Some Families of Opposition Graphs

Theorem 4.1. If P is an induced P_{4} in G, then \bar{P} is an induced P_{4} in \bar{G}.

Proof. If the path $a b c d$ is an induced P_{4} in G, then $c a d b$ is an induced P_{4} in \bar{G}
Corollary 4.2. \bar{P} is an induced P_{4} in \bar{G} if and only if P is an induced P_{4} in G.

Proof. P is an induced P_{4} in G, by Theorem 4.1, \bar{P} is an induced P_{4} in $\bar{G} . \bar{P}$ is an induced P_{4} in \bar{G}, by Lemma 4.1, P is an induced P_{4} in G

If the path $v_{i} v_{i+1} v_{i+2} v_{i+3}$ is an induced P_{4} in P_{n}, then the path $v_{i+2} v_{i} v_{i+3} v_{i+1}$ is an induced P_{4} in \bar{P}_{n}

Theorem 4.3. $\overline{P_{n}}$ is an opposition graph.

Proof. Let P_{n} be $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. We give an orientation for $\overline{P_{n}}$ as following :
$v_{k+2} \rightarrow v_{k}$ for all k is even.
$v_{i} \rightarrow v_{j}$ for all $i<j$.

Then we can check the orientation for all induced P_{4} in $\overline{P_{n}}$:

Case 1 If $\mathrm{n}<4$, then $\overline{P_{n}}$ has no P_{4}, so $\overline{P_{n}}$ is an opposition graph.
Case 2 If $\mathrm{n} \geq 4$, by Corollary $4.2, \bar{P}$ is a P_{4} in $\overline{P_{n}}$ if and only if P is a P_{4} in P_{n}. Suppose the path $v_{i} v_{i+1} v_{i+2} v_{i+3}$ is an induced P_{4} in P_{n}, then the path $v_{i+2} v_{i} v_{i+3} v_{i+1}$ is an induced P_{4} in \bar{P}_{n}, the orientation is as follows:

Figure 21:

If i is odd, then the orientation is $v_{i+2} \leftarrow v_{i} \rightarrow v_{i+3} \rightarrow v_{i+1}$, shown as Figure 21 (a).

If i is even, then the orientation is $v_{i+2} \rightarrow v_{i} \rightarrow v_{i+3} \leftarrow v_{i+1}$, shown as Figure 21 (b).

So $\overline{P_{n}}$ is an opposition graph.

Theorem 4.4. $\overline{T_{2}}$ is not an opposition graph.

Proof. T_{2} is expressed in Figure 22, there are six P_{4} in $T_{2}: a_{2} a_{1} o b_{1}, a_{2} a_{1} o c_{1}, b_{2} b_{1} o a_{1}$, $b_{2} b_{1} o c_{1}, c_{2} c_{1} o a_{1}, c_{2} c_{1} o b_{1}$. By Theorem 4.2, there are six P_{4} in $\bar{T}_{2}: a_{1} b_{1} a_{2} o, a_{1} c_{1} a_{2} o$, $b_{1} a_{1} b_{2} o, b_{1} c_{1} b_{2} o, c_{1} a_{1} c_{2} o, c_{1} b_{1} c_{2} o$. We can suppose the direction of the edge $a_{1} b_{1}$ is $a_{1} \rightarrow b_{1}$, then we have the following direction: $o \rightarrow a_{2}, a_{1} \rightarrow c_{1}, c_{2} \rightarrow o, b_{1} \rightarrow c_{1}$, $b_{2} \rightarrow o$, then the $P_{4} b_{1} a_{1} b_{2} o$ gives us a contradictory. Similar for the direction $b_{1} \rightarrow a_{1}$. So $\overline{T_{2}}$ is not an opposition graph.

Corollary 4.5. $\overline{T_{n}}$ is not an opposition graph for all $n>1$.

Proof. Because $T_{i} \subseteq T_{j}$ for all $i<j$, so $\bar{T}_{i} \subseteq \bar{T}_{j}$ for all $i<j$. By Theorem 4.4, $\overline{T_{2}}$ is not an opposition graph, so $\overline{T_{n}}$ is not an opposition graph for all $n>1$.

Theorem 4.6. The graphs C_{n} is an opposition graph if and only if $n=4 k$ or $n=3$.

Figure 22: T_{2}

Proof. The graphs C_{3} and C_{4} don't have an induced P_{4}, so C_{3} and C_{4} are opposition graphs. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of C_{n}. Deleting the edge $v_{n} v_{1}$, the graph is a path P_{n}. By Theorem 3.3, we can give an orientation as follows :
$v_{i} \rightarrow v_{i+1}$ for all $i=4 k, 4 k+1$, where $k \in \mathbb{N}$ and $i<n$.
$v_{i+1} \rightarrow v_{i}$ for all $i=4 k+2,4 k+3$, where $k \in \mathbb{N}$ and $i<n$.
case 1 If $n=4 k$ where $k \in \mathbb{N}$, then the orientation of the edge $v_{n} v_{1}$ is $v_{1} \rightarrow v_{n}$. Hence, C_{n} is an opposition graph.
case 2 If $n=4 k+1$ where $k \in \mathbb{N}$, then the path $v_{4 k-1} v_{4 k} v_{4 k+1} v_{1}$ is an induced P_{4}, the orientation of the edge $v_{4 k+1} v_{1}$ is $v_{4 k+1} \rightarrow v_{1}$. The induced $P_{4} v_{4 k+1} v_{1} v_{2} v_{3}$ gives us a contradictory, so C_{n} is not an opposition graph.
case 3 If $n=4 k+2$ where $k \in \mathbb{N}$, then the path $v_{4 k} v_{4 k+1} v_{4 k+2} v_{1}$ is an induced P_{4}, the orientation of the edge $v_{4 k+2} v_{1}$ is $v_{4 k+2} \rightarrow v_{1}$. The induced $P_{4} v_{4 k+2} v_{1} v_{2} v_{3}$ gives us a contradictory, so C_{n} is not an opposition graph.
case 4 If $n=4 k+3$ where $k \in \mathbb{N}$, then the path $v_{4 k+1} v_{4 k+2} v_{4 k+3} v_{1}$ is an induced P_{4}, the orientation of the edge $v_{4 k+3} v_{1}$ is $v_{1} \rightarrow v_{4 k+3}$. The induced P_{4} $v_{4 k+2} v_{4 k+3} v_{1} v_{2}$ gives us a contradictory, so C_{n} is not an opposition graph.

Hence, C_{n} is an opposition graph if and only if $n=4 k$ or $n=3$.

Figure 23:

5 Open Problems and Further Directions of Studies

In this article, we prove some graphs are opposition graphs. In a tree T, R is the set of vertices with degree greater than or equal to 3 , if every distance of any two vertices is even, then T is an opposition graph. In a cycle C_{n}, if $n=4 k$ for all k is integer, then C_{n} is an opposition graph. There are still some open problems for future studies:

1. In Chapter 3, we have known some classes of trees are opposition graphs. Furthermore,
a. We would like to find out the necessary and sufficient conditions of trees being opposition graphs.
b. We would like to find out the necessary and sufficient conditions of any graph being an opposition graph.
2. In the Figure 1, we know that P_{4} is an opposition graph but not a threshold graph; C_{6} is a perfect graph but not an opposition graph. Furthermore,
a. We would like to find out the relation between opposition graphs and perfect graphs.
b. We would like to find out the relation between opposition graphs and the other graphs.

References

[1] A. N. Trenk, Tolerance Graphs, Cambridge Univ Pr, 2004.
[2] A. Tucker, Applied Combinatorics, Wiley, 2006.
[3] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.

