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Abstract

The paper develops a new test for panel unit root. The test suggested is a panel
version of the Dicky-Fuller-type test. By taking full advantage of trending properties in
data, the test is consistent at a rate faster than that considered in Levin, Lin and Chu
(1997). The use of a pooled hyper-consistent estimator of unit root in panel regressions
renders this feasible. The limit distribution of the test under the null, established by
letting time series {7) and cross-sectional units {N) go to infinity is shown to be a
standard normal. Our bootstrap tests are found to have correct rejection probability
even for narrow and short panels, and to exhibit better power than the Im-Pesaran-
Shin test statistics in large panels.
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1 Introduction

There has been a surge of interest in using panel data to test for nonstationarity in recent
empirical work. Notable examples may include testing the income convergence hypothesis
based on the growth theory (e.g., Bernard and Jones, 1996), and the long-run purchasing
power parity in international finance (e.g., Frankel et al.. 1996). These studies were made
possible by more available panel data sets, covering different countries over a relatively
long time period. Quah (1994) pioneers the research by proposing the tests that exploit
information from cross-sectional dimensions in inferring nonstationarity from panel data.
Levin, Lin and Chu (1997, henceforth LLC'} and Im, Pesaran and Shin (1997, henceforth
IPS) constitute further important contributions along the line. Extending the work of Quah
(1994), Levin et al. consider an panel version of ADF-t test statistics by pooling estimates of
unit root. Im et al., on the other hand, mount a panel unit root test by averaging individual
LM-statistics. As an important feature, the limit distribution of these available panel unit
root tests are all characterized by a standard normal, remarkably different from those with
univariate unit root tests. Closely related to the development in the panel unit root testing,
Kao (1999) and Phillips and Moon {1998], on the other hand, study the asymptotic theory
of cointegration in the panel data.?

One of the original motivations to develop tests for unit root in panel data is due to the
lack power of conventional univariate unit root tests against persistent alternatives, lypically
for sample sizes that occur in practice. Recognizing data of longer span may lead to more
reliable inference, researchers then employ the amount of available information as much as
possible in applied time series work. This has been proven quite satisfactory in improving
the power of unit root tests. Alternatively, applied researchers appeals to panel data where
additional information from cross-sectional units help identify the parameters of concern,
when long time series is not available. Panel data sets used in applied work, such as those
aforementioned, consist of time series and cross-sections of comparable dimension, or often,
short time series but very wide cross-sectional units. For example, the real exchange rate
data in the study of Frankel et al. on the PPP hypothesis is a panel of more than 100
countries over less than 25 years. As far as the applicability and usefulness in applied work
are concerned, it appears to be more needed developing tests for panel unit root valid in the
context with short time series but large cross-sections than with long time series and large
cross-sections. A test statistic is thus preferred, if it can more efficiently extract information
from time series while summarizing the same or more information from cross-sections than
the existing ones, or technicallv speaking, if it is powerful when the panel under study is

10riginally Levin and Lin, 1993. The revision is concerned with proafs of the asymptotic results. It does
not affect conduct of the tests or critical values derived in the earlier version.

2 A related contribution to the literature is by Hadri {1998) who considers tests for the null of stationarity
in panel data.



wide but short,

This paper proposes tests for unit root in panel data that makes the notion come into
effect. The use of a hyper-consistent estimator of a unit root by Phillips (1995} makes
possible the construction of the test statistics. Faster than the OLS estimator of a unit
root, the estimator, by taking advantage of the trending property in the data, is consistent
at a rate of 0,(3/2), thus suggesting using information from time series more efficiently.
Constructing a test of unit root based on the estimator, in the univariate context, however,
is appealing in theory but seems implausible in practice. This is because the asymptotics of
the hyper-consistent estimator depends crucially on the nature of regression errors that are
generally unknown. Our paper, in view of this, contributes to bringing the construction of an
efficient test of unit root a revival by marrying the estimator and panel data. The new test for
panel unit root we propose is essentially a pooled-t test statistic. By pooling cross-sectional
information, random variations fromn the regression errors thus can be smoothed out, paving
the way for building the new test that can efficiently utilize time series information. Indeed,
the new test is consistent at a rate faster than the LLC test, as a direct result of the use of
the hyper-consistent estimator. An implication of this faster rate is simply that the new test
could be more powerful than alternative tests, in particular with panels of short time series
but wide cross-sections.

Another contribution of the paper lies in our simplifying the hyper-consistent estimator
by making further use of trending property in time series. As a common practice in the
unit root literature, the estimator is corrected so that asymptotically it is free of nuisance
parameters controlling error temporal dependence. However, we find that the correction, in
the unit root context, is invariant to the dependence structure of error process. This suggests
using the probability limitv in place of semi-parametric estimates of the correction originally
by Phillips and Hansen (1990} and Phillips {1993). The importance of the simplification
thus has in fact much to do with eliminating sampling errors between the estimates and
the true parameters. Practically, this could give a better asymptotic approximation to the
finite-sample distribution of the suggested test.

Like those univariate unit root tests, the existing tests for panel unit root, including
ours, subject to small-sample problems. The situation is in particular severe when time
series is short, and heterogeneity and nuisance parameters, such as time trend and individual
mean, are involved in estimation. The LLC and IPS tests, to cope with the problem, take
the approach of simulation-based bias correction. Here, however, we deviate from their
routes by taking the bootstrap method, another simulation-based approach. The preliminary
simulation results we have reveal that the bootstrap test seems promising. Our bootstrap
test not only has the right empirical rejection probability even for short and narrow panels,
but also presents significantly better power than the test with level-adjusted critical values.
Of more practical relevance is that instances of the latter take place more often for pane.s
of large cross-sections but short time series that usually are associated with very low size-



adjusted power in our simulations. This evidence shows the potential merits of using our
test in combination with the bootstrap method in the practical analysis.

The rest of the paper is organized as follows. Section 2 discusses the hyper-consistent
estimator of unit root and its simplification. Section 3 looks at models of concern and
assumptions. The new test statistic for panel unit root, and its asymptotic properties are
studied in Section 4. Section 5 reports finite-sample performance of the new tests. Section

6 concludes. Appendix contains mathematical proofs.

2 An Efficient Estimator of Unit Root

The idea of our test for panel unit root is built on the hyper-consistency of the fully-modified
OLS (FM-OLS) estimator for unit root in Phillips (1995). We star by considering a simple

univariate autoregressive time series:
Y = i1 + uy, where ¢ =1,

and u, is a linear process with Eu, = 0. and E{(x}) = ¢2. The FM-OLS estimator for ¢ is
then defined as -
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where Ay, = 4 — 11— Here Qg1, Q11, Agr, and Ay are the elements in any consistent
estimates of the long-run covariance and one-sided long-run covariance matrix, respectively,
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Phillips {1995} shows that
T{bgy — 1) —p 0,

indicating that @ras converges in probability to the unit root at a faster rate than the OLS
estimator. The fullyv-modified estimator by Phillips and Hausen (1990) is designed to yield
a theory of inference invariant to parameters in the context with cointegrating variables.
It works for the unit root process becanse i and g7 can be regarded as two variables
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cointegrating with a vector [1,—1]. The common trending component in ¥ and 1 is

actually the same. As a result,

N W2 R 1 [ o2 2 2 g2
Q—*-pﬂzl 2 £2}=&ﬂd&—>pﬁ=— o T

weow 2 wz—l-a'ft wz—l—crg
Note here that this implies that regardless of the dependence structure in ;.
ﬁl_llﬁm —p 1.

Replacing ﬁﬁl (o1 by its probability limit, 1, thus would not alter the limit of Grar. When

the sample is sufficiently large,

T 0
t;Q(yt'yt—l — 1 lyy) + (T — l)o';’;
Ef:z Y1

IV + op(1),
where we also use the fact that in {3), Af = Ap — A + 0,(1) = —02 + 0,(1}. In other

words, ‘
(Grar — 1) = % + 0p(1),
Because yr_jur is O,(vT) and Y1, i | is Op(T?), we immediately see why the hyper-
consistency holds.
It can be further shown that
W{l)ue
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where W{r} = BM(1) and is indepeudent of the random variable %, which has the same
distribution as the error u;. Phillips (1992) first establishes the asymptotic distribution
of Q’:;F‘l,.f', using the kernel-based estimates of the long-run variance, under the assumption
that the bandwidth parameter has to grow at a rate faster than the optimal rate based on
minimizing the mean square error. Here, without relying on the requirement on the growth
rate of the bandwidth number, we show that it is vet able to obtain the hyper-consistency.

Test statistics based on (1) in the univariate context could be more powerful than con-
ventional unit root tests, but is not readily applicable in practice. The reason for this is that
the asymptotic distribution of the estimator in (4) depends crucially on the nature of ue,
that is generally unknown. However, when panel data is available, it is possible to develop
such a useful test by pooling data. The additional information coming from cross-sectional
units helps to smooth out random deviations of .., and renders the construction of the test
feasible. In what follows, we shall explore this possibility.



3 Models and Assumptions

In this section, we lay out our models that generate the data, and specify the assumptions
under which the limit distribution of our proposed test can be obtained.

Consider a sample of N cross-sectional units over T time periods, denoted by {w::} for
i=1,--,Nandt=1,---,T. Following the literature, we assume that {y;} are generated

from one of the following first-order autoregressive processes:
Model 11 % = dithip—1 + ig

Model 20 i, = (1 — @) + dp—1 + iy
Model 3:  yp = oy + F{l — @)t + Y1 + Uiy

We are interested in testing for unit root in {y;}. The null hypothesis we are looking at
is
Hy: ;=1 for all 4,

while the alternative hypothesis is
H, : |¢i| <1 for some i.

The model allows for heterogenecity to some degrees. The time trend effect and individual
effect could differ across units. Under the alternative, part of the series, not necessarily all
of them, in the panel could be stationary. To complete model specification, we also make
the following assumptions about the error processes {u; } allowing for heterogeneity in their

moments.

Assumption 1: {u;+} is a linear process such that
ac oc
(a) usy = Ci(L)ess = 3 €igqy, wWith 3 jgc;‘f < oc for all 4;
=0 3=0
(b} =iy is Lid. across i and over t with E(s;) = 0 E(2},) = 1 and E(e},) = 0. < M, a finice

number.

Assumption 1 allows for individual time series to exhibit varying serial correlations, and

to have a heterogeneous variance. Under Assumption 1, the variance of u,, oﬁi, is equal

20

to 'Eu c?, and the long run variance of u;, is given by w?
J:

of individual variance, that of individual long-run variance, and that of individual long-run

= C?(1) < oc. The average

variance weighted by its own variance, however, has to be bounded to carry out the derivation

of the asymptotics, as we now state:

Assumption 2:

: . 1
(a) 02 = liMy_oc 37 2 02, < OO
(b) w? = lmy_no = 3502 < 00;

{€) w2 =My o & 2 00, wf < 26,



4 Test Statistics and Limit Results

Our test statistics is easy to implement. It is a multivariate version of ¢ ratio for unit root
as the LLC test. But our test statistics differ from the LLC test by the use of the simplified
FM-OLS estimator of unit root, as discussed in (?7).* We now forinally describe our testing

procedure.

1. The first step is to de-mean (and de-trend} {y; }, when Model 2 (Model 3) is of concern.
Specifically, regress y; against constant (and time trend),* and the OLS residuals
obtained then form the de-meaned (and de-trended) panel, denoted by {#;}. That is,
Tt = yu for Model 1, % = . — G; for Model 2, and %, = yis — &; — 3t for Model 3.

2. Stack series all together and obtain the pooled estimate of ¢&;, denoted as 5 PFAf, DY
applying the simplified FM-OLS to the whole panel:

N T ] N

(21 tzgﬁi,tﬁfe,t—l - &?-z',t—lgf,tﬂ) + N(T — 1)52
-~ i=] t=

(5) Ppry = N T :

where

with 72, being estimates of o7 .

3. The last step comes to form the pooled t-statistics:

Sprar — L
(6) tias = VT GPEM T3
N T e
o [Z 2 y-iz_.t—l:’
i—1t=2
where R
5=

with &, and & are estimates of w, and w, as defined in Assumption 2, respectively.

Here, C' is a model-specific adjustment factor,

o V2  for Model 1 and 2
] V1.5  for Model 3.

3n principle, it is possible to construct an average-¢ test using the sitnplified FM-OLS estimator. We do
not pursue this approach here.

*When heterogeneity in intercept (time trend} is allowed for, the de-meaning {de-trending} procedure has
to be done series by series.



The proposed t-statistics is the one that adjusts for nuisance parameters. The adjustment
implicit in & is made such that the limit distribution of the suggested test is free of param-
eters, a quite common practice in the theory of unit root and cointegration. It should be
noted that unlike the LLC test, our pooled-t test is with a norming factor, VT, as a direct
consequence of using the hyper-consistent estimator.

Having defined the test statistics, we focus our attention on its large-sample behavior.
The asymptotic derivation generally would be involved a treatment of two indices, N and T.
The limit theory dealing with double indexed processes has been made transparent in Phillips
and Moon (1998). For a clear exposition, we mainly take the sequential limit argument in
the text when deriving the limiting results. This approach gives an immediate limit by first
letting T and subsequently N go to oc. However, to be more rigorous, in the appendix, we
also establish, under stronger conditions, the same limit results using the joint limit theory
where both T and NV grow simultaneously.

Indeed, the limit distribution of the test statistics is a standard normal with appropriate
normalization. This is the main limit result of the paper as given below.

Theorem 1: Suppose G2 —, oo, &2
Hy: ¢, =1 for all 4,

—, wl, @ —, w?, and Assumptions 1 and 2 hold. Under

trny — JV(O, 1)

as T and N pass to o in a sequential order.

While the normality of the test statistics obtained is the same as those with the LLC
and IPS tests, our test to converge to the normal is distinct from others by multiplying an
extra /T, as a result of using the simplified FM-0OLS estimator. Table 1 reports the appro-
priateness of the asymptotic normal approximation for Model 1 for different sample sizes.
The data generating processes considered are those in IPS which allow for heterogeneous
variances and serial correlations over panels. The normality approximation indeed appears
quite accurate even for small and narrow panels, a remarkable feature revealing in the table.

It is easy to derive the normality by the sequential limit argument. To see this, we first
derive the limit of ¢ra, aside from the adjustment &. So for fixed ¥, as T' — oc, due to (4}

and the cross-sectional independence,

o) (3550) = (

=1 ¢=2

1 N _ 1 N i pein -1/2
wWiWi(ljtie | | = f PV
S (4 o)

where
Wi(r) for Model 1

Wilr) = ¢ Wilr) — fy Wils)ds for Model 2
Wilr) + 2 [ Wi(s)ds — 6 f) sWi(s)ds for Model 3.



Note that
E (Wil ie) = 0, and B (Wi Dtino) - = (Aoiwi)?,

N
with A =1, +/.333 and +/.13 for Model 1, 2 and 3, respectively. Because limp_.o % > (Acr.m.u,:.i)2 <
i=1
2o, by the Lindeberg Levy central limit theorem, as N — oo,

(7) ﬁ Z wi Wi (g 0o == N (0, A%2).
d

Also, because

E (/01 wfﬁff(’r)dr) = (éwz)2

it is straightforward to see that as NV — oc

1 N 1 _ A 2
(8) F;fo WiWE(r)dr —, (-C-w) :

Combining (7) and (8), by the continuous mapping theorem, we have

—1/2
( iR Z..ut u,m) (sz WIWE(r ) = N(0,6%)

where ¢ = Cw,/w. We now have established the normality of the test in the limit.

In the preceding limit derivation, it is important to have consistent estimates of cri, Wy, @
The choice of the estimator is also of much practical relevance in terms of finite-sample per-
formance of the suggested test. We will discuss how to obtain them in the Monte-Carlo
simulation.

We come to examine the large-sample power implication of the suggested test, comparing
to other existing tests. We investigate the test consistency under the alternative that |¢;| <
1 and ¢; = ¢ for all 2. Letting T and N — oo sequentially,

‘\/T N J\l’ 1,‘12

trm = —= [(@P}-‘M — o)+ ] [Z S G 1] = 0,(V'T) + O,(TV'N).
i=1 t=2

The first term in the LHS is due to that the FM-OLS estimation of stationary coefficient is

conmstent at a rate of Op(+/T) by Phillips (1995), and the second term comes from the fact

Z E §2_1/TN = Op(1) as Hiy— is stationary. The result is summarized in the following

i=1 t=2

theorem.

Theorem 2: Suppose 52 —, 02 &2 —, wi, ®® —, w*, and Assumptions 1 and 2 hold. Under
H,:¢,=|¢| <1 for all ¢,
fpag = OP(T .N')



as T and N pass to oo in a sequential order.

Table 1 also gives the simulation evidence for the test consistency under Model 1. As
seen from the table, the power of the test increases with N and 7.

IPS prove that the average-LM test diverges at the same rate of Op(7v'N). This suggests
that as a reflection of the rate, our test may in the small sample exhibit similar power
performance against fixed stationarity alternatives to the IPS test. ® LLC do not prove the

test consistency, however.

5 Simulation

This section is devoted to investigating small-sample performance of the proposed test for
unit root in panel data. Our simulation is featured by the use of bootstrap method to give a
good control over the rejection probability. It has been well documented that conventional
unit root tests subject to size distortion problem, based on the asymptotic critical values for
sample size that occurs in practice. The existing tests for panel unit root, including ours, as
a multivariate extension of the univariate unit root test, have the same sort of the problem.
The downward bias with estimates of autoregressive coeflicients when time series dimension
is not sufficiently large compounds further the problem. Like other panel unit root tests, our
test can be seen as an average of the sum of a sequence of random variables. The sumination
across the random variables, however, exacerbates the bias as cross-sectional units grows for
a fixed time length.

To deal with the problem, while LLC and IPS take the route of correcting for small-sample
bias that depends on sample sizes, we adopt the bootstrap method as another simulation-
based approach. The difficulty to do small-sample corrections here is because the nuisance
parameters on which the test statistics (6) depend is not invariant to the data generating
process of the errors, unlike in the LLC and IPS tests.

To allow for a comparison, we consider the average LM test by IPS, denoted by U7
The pooled t test by LLC is not taken into account. The test is less applicable in panels
with heterogeneity as considered here. Simulation evidence presented Im et al. (1998) indeed
demonstrates that the LLC-test does not perform well, comparing to the IPS-test, in many
instances with heterogeneity.

Our Monte-Carlo designs follow those in IPS as in Table 1. Since our panel unit root test
is found to perform well based on the asymptotic critical value for Model 1, the bootstrap
simulation is conducted only for Model 2 and 3. The data is thus generated according to

Here we only establish the test consistency under the alternative that |¢;| < 1 for all . When some of
the processes are stationary and some are not under the alternative, the proof is a little more involved, but
the conclusion is the same.



the following process,
Model 2: ¥, = i1 — @) + Qg1 + iy, or Model 3: gy = o4 + (1 — S}t + Py + iy,

where
Ui = MUit—1 T Eig,

a; ~ N(0,1), g5, ~ N(0,0?) and o ~ U[0.5,1.5]. We consider both cases that errors
are with and without autocorrelation, controlled by p;. p; ~ Ul.2,.4] in the presence of
autocorrelation. p; ~ U[.2,.4]. oy, and o? are generated once and fixed in all replications.
The initial values, y;p are set to be 0. To evaluate the finite sample performance, the
parameter of major interest, ¢;, are set to 1 under £y and to .9 under H, for all units. Monte-
Carlo replications are 1,000 and bootstrap replications take 100. Larger bootstrap seems
desirable yvet much time-consuming. Bootstrap replications of 100 have been typically used
in the literature. Rejection frequencies based on 5% asymptotic and bootstrap critical values
are, respectively, used to evaluate the test performance. The dimensions of the panels are
chosen to be: N = (10,25, 50, 100) and 7" = {25, 50). The simulation without autocorrelation
basically serves as a baseline. On the other hand, to account for autocorrelation, the long-run
variance for each cross-sectional unit is estimated non-parametrically using the QS kernel
with a bandwidth set to T%% and no pre-whitening. The choice of the kernel and the

bandwidth are based on the criterion of the mean square error minimum in Andrews {1990).

5.1 Asymptotic Approximation

Entries labelled under ‘Asym.’ in Table 2 and 3 illustrate the finite-sample performance
of our test and the IPS-test for Model 2 without and with autocorrelation, respectively,
based on the 5 % asymptotic critical value. The performance of the tests is evaluated using
the empirical rejection frequencies in 2,000 replications. It should be noted that the power
reported for fyy; is size-adjusted.

Very different from Table 1, unfortunately, the test is now subject to a substantial size
distortion that grows as N increases for a fixed T. Our asymptotics offers a partial expla-
nation of the size distortion where a comparable growing rate between N and T has to be
maintained in order to achieve the normality weak convergence. When N is of relatively
larger in dimension than T, the small-sample distribution of the proposed test shifts left-
wards as the imprecise estimate of the long-run variance from each unit accumulates when
N grows. The slow convergence of the FM-OLS estimator documented in Phillips (1992)
may also explain the size distortion.

While with the size distortion problemn, the test for Model 2 displays an excellent size-
corrected power. Indeed, for panels of medium size (7, N = 23) which are of practical
interest, the rejection frequencies of the proposed test in general exceeds that of the IPS-test
by more than 20% under the alternative, whether or not autocorrelation exists. This suggests

10



the merit of using the efficient FM-OLS estimator to gain the power in the context of testing
for panel unit root. Table 3 and 4 show for Model 3 the same size distortion problem and

power excellence of the suggested test.

5.2 Bootstrap Approximation

The size distortion problem is clearly indicative of the poor large-sample approximation
under the null. We take a bootstrap procedure that enforces the restriction of a unit root to
overcome the problem. The bhootstrap distribution in the standard statistical contexts can
yield consistent estimates for the sampling distribution, and thus the bootstrap test gives a
better control over the size. The bootstrap estimate is implemented as follows.

1.

Given a draw {;;}, calculate the constrained least square (CLS) residuals under the
null for each individual i. The residual for each ¢ is given by 4;, = Ay;; for Model 2,
and @;; = Ay, — & for Model 3, where @; = % ST, Ay

. Fit @;, with an AR(p). i.e. For each 4,

Fe
Uy = Z Pirly g+ €y
k=1

. Center the residuals {&;.} by

€t =

T—1 (_ Zf:—_z.‘.p éi,t)

T-1—p\™ ~T_-1

Draw a random sample of T for each i with replacement from the empirical distribution

function of &;,, denoted by &},.

Generate a bootstrap sample by the autoregression,

P
— —  —a —
ui‘t - Z p‘i,kui’t_k + Si‘t1
k=1

and construct the pseudo-series {y;‘ t} by

y;t - y;,t__l + ﬁﬁ:\; (I\"I(}de]. 2); - ﬁz + 'y:’tAl + ﬁ-;‘t (I\"Iodel 3).

Calculate the {gas-statistics using the bootstrap sample {y:t}, denoted by t}y;.

Repeat the preceding steps 100 times, and obtain the bootstrap distribution of ¢}.,,.

. Calculate the 5% quantile of the bootstrap distribution of ¢}-,;, denoted by 3.4 cer.

11



9. Compute the rejection frequencies under both the null and the alternative, based on
the bootstrap critical value, £}, 5. The rejection frequencies obtained are then the

bootstrap size and power, respectively.

We now discuss the bootstrap procedure. Step 1 imposes the unit root null hypothesis
in obtaining estimates for the errors. This will prove quite important in examining the
performance of the bootstrap tests. The constrained bootstrap is first-order correct under the
null of unit root, but is not under the alternative. In view of this, the bootstrap critical value
calculated, fhy 5, under the alternative may not be appropriate. It might well anticipate
that the power performance based on it would not perform as well as that based on the
size-corrected critical value.®

Step 2 is a parametric recursive bootstrap in order to estimate the autocorrelation in
errors. In simulation reported subsequently, the lag order p is chosen to be 1 or 2, while
the true order in DGP is 1. By letting p = 2, we want fo check if the performance of
our bootstrap tests is sensitive to the overfitting. This is an importnat information for
applications because the true lag order is generally unknown.

The standardization in Step 3 is to correct for downward bias of the autoregression

estimates as suggested by Bickel and Freedman (1983). The bias is particularly large when
T—1
T-1-p°

rest of the procedure is typical in the bootstrap approximation, and is self-evident as stated.
We now report the simulation results with the constrained bootstrap test, given by entries

T is small. The normalization factor, indeed converges to 1 as T increases. The

labelled under ‘Asym.’ in Table 2 to 5. Two observations emerge from the tables. First, the
bootstrap test exhibits an excellent control over the rejection frequencies under the null for
panels that can be as small as N = 10 and T" = 10 for the cases without autocorrelation, and
N =10 and T = 25 for the cases with autocorrelation. Of more practical relevance is that
the overfitting by choosing p = 2 in the autoregression assoicated with @;; harm little the size
performance of our bootstrap test, as seen from those entries labelled under ¢73;(2). This
bootstrap levels reported are indeed close to the nominal 5%, regardless of which models or
cases are considered.

Second, the power performance of our bootstrap test depends on which model is under
invesitgation. For Model 2, our bootstrap test again outperforms, even a slight power loss
occurs, comparing to its size-adjusted counterpart. The power dominance is not sensitive
to the overfitting as well. When Model 3 is considered, in contrast to those reported using
size-corrected critical values, the bootstrap tests have a similar power performance to the
IPS-test when the panels are large. In some instances, however, particularly cases with an
overfitting in narrow and short panels, the bootstrap test is inferior. As expected, this is a

consequence of using incorrect bootstrap critical values under the alternative as discussed.

8Tt would be fruitful to evaluate the performance of the ‘unconstrained’ bootstrap test.
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6 Concluding Remarks

This paper proposed a panel unit root test by taking most advantage of the trending prop-
erties in time series data. The suggested test takes a form of averaging a series of random
variables, and is not different from the existing tests in broad sense. Distinct from others,
however, our test employs an efficient estimator of & unit root in construction. The use of
such an estimator convert the gain in efficiency into a power gain, evident from the simulation
where the tests could perform better than the IPS test in some cases, based on either size-
adjusted or bootstrap critical values. The proposed tests therefore serves complementary to

the existing test for panel unit root.
While the size distortion could be well controlled for the bootstrap test, the constrained

bootstrap adopted here potentislly yields inconsistent critical values under the alternatives.
Qur bootstrap tests in cases with time trend displays a sizable power loss, in contrast to
its size-corrected counterpart. It remains a topic of research to investigate whether the
unconstrained bootstrap could improve the power, at the same time maintain the correct

size.
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Table 1: Finite-sample performance of {pys test
(Model 1: % = @itpie—1 + tig)

T=10 25 a0
size power  size power size power
N=10 0.068 0.451 0.059 0641 0.052 0.962
25 0.079 0.685 0.043 0949 0.058 1.000
50 0.081 0.864 0.061 0.9%4 0.060 1.000
100 0.091 0.972 0.052 0.999 0.063 1.000

Note:
1. The data generation process (DGP) is

Yig = OYipo1 + Wi, Uiy = Pithgg—1 + Si,0 = 1, Nyt =1,...,7,

where ¢ = 1,.9 under Hy and H, respectively, £;¢ ~ N(0,02), ¢ ~ U[0.5,1.5) and p; ~
U)0.2,04!. o2 and p; are generated once and fixed in all replications.

2. The reported size (¢ = 1) and power (¢ = .3) are empirical rejection frequencies using
asymptotic 5%-level critical value (-1.645) in 3,000 replications.

3. The long-run variance is estimated using QS kernel with a fixed bandwidth T!/% on pre-
whittened residuals.
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Table 2: Size and Power of tpy and W37 in Heterogenous Panels
(Model 2: ;s = 05(1 — &} + Piyis—1 + i, No autocorrelation)

T=10 25 50
tesr Uy tem Yrar tem VYim
N=10 Asym.
size 0.823 0.053 0.850 0.064 0.839 0.057
power 0.223 (.105 0.530 0.262 0.942 0.678

Boot.

size  0.050 0.061 0.056

power 0.203 0.571 0.935
25  Asym.

size 0.982 0.062 0982 0.058 0.978 0.059
power 0456 0.165 0928 0463 1.000 0.964

Boot.

size  0.051 0.043 0.034

power 0.408 0.895 1.000
50  Asym.

size 1.000 0.059 0.998 0.067 0.999 0.052
power 0.682 0.242 0.996 0.693 1.000 0.999

Boot.

size  0.047 0.043 0.042

power 0.670 0.995 1.000
100 Asym.

size 1.000 0.060 1.000 0.068 1.000 0.054
power (.904 0.386 1.000 0.931 1.000 1.000

Boot.
size (.037 0.034 0.034
power (.862 1.000 1.000
Note:
1. The DGP is

Yip = {1l — @) + SYip—1 + Uy

where ¢ = 1,.9 under Hy and H, respectively, o; ~ N(0,1), w;; ~ N(0,07), o ~ U[0.5,1.5].
a; and of are generated once and fixed in all replications.

2. Entries labelled ‘Asym.’ are empirical rejection frequencies in 2000 replications, based on
5%-level asymptotic critical value {-1.645)}, except that power of tpy s size-adjusted.

3. Entries for trps labelled ‘Boot.” are empirical rejection frequencies in 1,000 Monte Carlo
replications of 100 bootstrap replications, hased on 5%-level bootstrap critical value under the
null.
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