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3. Methodology 

 

3.1 Reverse Optimization 

We start with the equations for “reverse optimization.”  Throughout this section, K is 

used to represent the number of views and N is used to represent the number of funds 

in the portfolio. 

     wwwU TT Σ−∏= )2/(λ                        (3.1) 

     U : the fund manager’s utility, and this is the objective function of portfolio 

optimization. 

     w : the vector of weights invested in each fund  (N x 1 column vector) 

     ∏ : the vector of equilibrium excess returns for each asset (N x 1 column 

vector) 

     λ : the risk aversion coefficient 

     ∑ : the covariance matrix of excess returns (N x N matrix) 

 

The fund manager’s utility U  is a concave function, so it will have a single global 

maximum. If we maximize the utility with no constraints, there is a closed form 

solution. We find the exact solution by taking the first derivative of (3.1) with respect 

to the weights and setting it to 0. We can achieve (3.2) 

     mktw∑=∏ λ                                (3.2) 

where  

     mktw : the market capitalization weight (N x 1 column vector) of the funds 

 

The Black-Litterman model uses “equilibrium” returns as a neutral starting point. 

Equilibrium returns are the set of returns that clear the market. The equilibrium 

returns are derived using a reverse optimization method in which the vector of 
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implied excess equilibrium returns is extracted from known information using 

formula (3.2). The risk-aversion coefficient (λ) characterizes the expected risk-return 

tradeoff. It is the rate at which an investor will forgo expected return for less variance. 

In the reverse optimization process, the risk aversion coefficient acts as a scaling 

factor for the reverse optimization estimate of excess returns; the weighted reverse 

optimized excess returns equal the specified market risk premium. More excess return 

per unit of risk (a larger lambda) increases the estimated excess returns. We can find λ 

by multiplying both sides of (3.2) by tw  and replacing vector terms with scalar 

terms. And then we can achieve (3.3): 

2

))((
σ

λ frrE −
=                              (3.3) 

)(rE  : the total return on the market portfolio ( frrE +∏=)( ) 

fr  : the risk free rate 

2σ  : the variance of the market portfolio ( wwt ∑=2σ ) 

 

Since we get λ through (3.3), we can arrive at ∏  when we plug w, λ and ∑ into Eq. 

(3.2) and then generate the equilibrium fund returns. 

 

 

3.2 Specifying the views 

We will describe the process of specifying the investors’ views of estimated returns. 

We define the combination of the investors’ views as the prior distribution. Firstly, by 

construction we will require each view to be unique and uncorrelated with the other 

views. This will give the prior distribution the property that the covariance matrix will 

be diagonal, with all off diagonal entries equal to 0. Besides, we will require views to 

be fully invested, either the sum of weights in a view is zero (relative view) or is one 
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(an absolute view). 

 

We will represent the investors’ k views on n assets using the following matrices 

1. P is a K×N matrix of the asset weights within each view. For a relative view the 

sum of the weights will be 0, for an absolute view the sum of the weights will be:  
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2. Ω is a K×K matrix the covariance of the views. Ω is diagonal as the views are 

required to be independent and uncorrelated. Ω is also known as the confidence 

in the investor's views. The ith diagonal element of Ω is represented as iw . 

 

3. Q is a k×1 matrix of the returns for each view.  

 

Given these matrices we can formulate the prior distribution mean and variance in 

portfolio space as: 

     ( ) ~ ( , )PE r N Q Ω                       (3.5) 

    

There are three main ways to calculate Ω. Firstly, we actually compute the variance of 

the view. This is most easily done by defining a confidence interval around the return. 

Secondly, we can just assume that the variance of the view will be proportional to the 

variance of the assets, just as the variance of the sampling distribution is. He and 

Litterman (1999) use this method, and we can use the variance of the view computed 

from the sampling distribution: 

     ))(( TPPdiag ∑=Ω τ                          (3.6) 
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This specification of the variance, or uncertainty, of the views essentially equally 

weights the investor's views and the market equilibrium weights. By including τ in the 

expression, the final solution becomes less dependent on the specific value of τ as 

well. Several authors have specified the confidence matrix as τΩ in order to manage 

this interaction. 

 

Idzorek (2004) introduces the third method. He allows the specification of the view 

confidence in terms of the percentage move of the weights from no views to total 

certainty in the view. 

 

We use Idzorek’s method because this method is more intuitive.. The greater the level 

of confidence (certainty) in the expressed views, the closer the new return vector will 

be to the views. If the investor is less confident in the expressed views, the new return 

vector should be closer to the implied equilibrium return vector (Π). 

 

3.3 The Black-Litterman Formula 

Applying Bayes theory to the problem of blending the sampling and prior 

distributions, we can create a new posterior distribution of the asset returns. Given 

Eq.(3.5) and Eq.(3.6) we can apply Bayes Theorem to derive the equation for the 

posterior distribution of asset returns. 

)))((,])][()([()( 11111111 −−−−−−−− Ω+∑Ω+∑Ω+∏∑∝ PPPPQPNRE TTT τττ  (3.7) 

 

E(R): the new combined return vector (Nx1) 

τ : a scalar 

Σ :the covariance matrix of excess returns (NxN matrix) 
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P : a matrix that identifies the assets involved in the views(KxN) 

Ω: a diagonal covariance matrix of error terms from the expressed views (KxK) 

Π: the implied equilibrium return vector 

Q: the view vector 

 

This is the famous Black-Litterman formula. We can represent the same formula for 

the mean returns in an alternative way: 

     ])[(])[()( 11111 QPPPRE TT −−−−− Ω+∏∑Ω+∑= ττ             (3.8) 

 

Eq.(3.8) is the new (posterior) combined return vector, and with all of the inputs and 

then entered into Eq.(3.8) new combined return vector is derived. The new 

recommended weights ( *w ) can be calculated by solving Eq.(3.4) without constraints 

or Eq.(3.1) with constraints. This process is presented as Figure 3-1: 

 

Figure 3-1. The process of deriving the New Combined Return Vector (E[R]) 
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3.4 Summary 

 

The Black-Litterman model combines views of the investor and the market 

equilibrium on the expected return of assets in one formula. This formula should be a 

better approximation of the expected returns. These expected returns, or more 

precisely the estimator of the expected return, could then be used in a mean-variance 

optimizer.  

 

The Black-Litterman model can be summarized by the following points: 

1. The market consists of N assets. Each asset has a return and variance. The 

return of asset i is denoted by ir . The expected return of asset i becomes 

)( irE . For a portfolio that consists of n assets, the return of each asset in the 

portfolio is captured by the vector of returns. The vector of returns also has 

an expected value, )(rE . The expected return )(rE  is an unknown and 

normally distributed random variable and is assumed to have mean u and 

variance ∑τ . 

2. The first source of information about E(r) is the equilibrium returns u. The 

equilibrium returns are found by Eq.(3.2) mktw∑=∏ λ . 

3. The second source of information are the K views of the investor. The views 

are expressed as ε+= QrPE )( . 

4. Combination of these two sources of information leads to E(R) being 

normally distributed with mean ])[(])[( 11111 QPPP TT −−−−− Ω+∏∑Ω+∑ ττ  

and variance 111 ])[( −−− Ω+∑ PPTτ . 

5. The mean ])[(])[( 11111 QPPP TT −−−−− Ω+∏∑Ω+∑ ττ  and variance 

111 ])[( −−− Ω+∑ PPTτ  can be used in a mean-variance optimization process 

to obtain a mean-variance efficient portfolio.  


