English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 97106/127750 (76%)
Visitors : 33247187      Online Users : 276
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/100562


    Title: 多軸飛行器用於自拍情境之互動模式研究
    Exploring Interaction Modalities for a Selfie Drone
    Authors: 陳建方
    Chen, Chien Fang
    Contributors: 余能豪
    陳儒修

    Yu, Neng Hao
    Chen, Ru Shou

    陳建方
    Chen, Chien Fang
    Keywords: 多軸飛行器
    行動裝置
    互動模式
    虛擬實境
    Drone
    Multi-copter
    Mobile device
    Interaction
    Virtual reality
    Date: 2016
    Issue Date: 2016-08-22 13:34:30 (UTC+8)
    Abstract: 「自拍」是時下特有的社群文化,使用手持相機或自拍棒輔助拍照多有限制。然而搭載相機鏡頭的多軸飛行器(Camera-equipped drone)日漸普及,未來將有機會成為新的攝影器材。
    本研究由初步訪談並分類「日常生活中操作相機」之心智模型:(1)以自身為中心,指揮攝影師移動之操控者模式(User Mode),適合近距操作,如自拍;(2)使用者透過相機視角,取得觀測角度之觀景窗模式(Viewfinder Mode),適合取得遠距影像,如災區探勘;(3)以第三人稱同時控制攝影者與被攝者的導演模式(Director Mode),擅於處理人與鏡頭相對空間關係,適合已預想好全局構圖與分鏡腳本。本研究依上述分類討論文獻與商品之優勢與限制,探索「操作空間中任務擺放之相機(多軸飛行器)」的理想互動方法後,將「操作空間中的相機」互動切分為兩階段流程設計:(1)Positioning階段:以User Mode直視飛行器,指揮相機位置;(2)Fine Tuning階段:以Viewfinder Mode透過觀景窗取得影像並微調拍攝參數。
    本研究將著重於Positioning階段之飛行器控制互動方法,透過探討使用者的空間認知,提出三種符合使用者心智模型之飛行器運動座標系(球狀、柱狀與修正之三維座標),結合智慧型手機操作的類指向輸入方法(Semi-Direct Pointing),並實作沉浸式VR多軸飛行器體驗模擬器「Skyfie」,並進行兩次使用者測試,模擬使用者在3D空間中指揮飛行器移動至指定位置進行拍攝,實驗結果證明本研究提出之三種座標系統皆比傳統三維座標容易操作,並於最後討論各運動座標系適用之情境。
    Taking Selfie is a brand new type of photographic behavior and has become a phenomenon on social medias. In Asia, many people love taking and sharing selfies in their daily life and have create several tools to take good selfies suck as a selfie stick or a portable tripod. In the meantime, camera-equipped drones are getting more and more popular today. We can envision a future where personal flying selfie bots are always with us.
    Among the previous works and commercial products, the interaction techniques for controlling drone are mostly designed in drone-centric mode that require a longer training and are not easy for taking an anticipated shot. We investigate the user needs in taking selfies and propose an interaction technique that contains Positioning state and Fine Tuning state which are designed with user and viewfinder mode. Users can place a drone in a specified coordinate system by our semi-direct pointing technique and then compose the framing on the smartphone screen. We propose 3 coordinate systems for positioning stage and conduct two user studies in a simulated VR environment to validate the performance and user acceptances.
    In conclusion, we find that all three coordinate systems are more user friendly compare to traditional Cartesian coordinate system considering the test results and implementation cost.
    Reference: Apple Inc. (2015.) iOS Dev Center. Retrieved Apr. 19, 2015 from
    https://developer.apple.com/devcenter/ios/index.action
    Baig, M. H. (2015). MotionKit. Retrieved Apr. 19, 2015 from
    https://github.com/MHaroonBaig/MotionKit
    Brulez, N. (2015) AR. Drone SDK 3. Retrieved Apr. 19, 2015 from
    https://github.com/ARDroneSDK3/ARSDKBuildUtils
    Chi, P.L. (2013). Beyond Beauty - TAIWAN FROM ABOVE. Retrieved Apr. 19, 2015, from http://www.imdb.com/title/tt3316302/
    Dajiang Innovation Technology Inc. (2015) DJI Phantom 2 Official Website. Retrieved Apr.19, 2015 from http://www.dji.com/product/phantom-2
    Hawkes, J. (2015) Aerial Photography. Retrieved Apr. 19, 2015 from http://www.jasonhawkes.com/
    Helico Aerospace Industries US LLC, Airdog Official Website. Retrieved Apr. 19, 2015 from https://www.airdog.com/
    Higuchi, K. & Rekimoto, J., (2012). Flying head: head-synchronized unmanned aerial vehicle control for flying telepresence. SA '12, Article 12, 2 pages. DOI=10.1145/2407707.2407719
    Higuchi, K., Shimada, T. & Rekimoto, J. (2011). Flying sports assistant: external visual imagery representation for sports training. AH '11, Article 7 , 4 pages. DOI=10.1145/1959826.1959833
    Ikeuchi, K., Otsuka, T., Yoshii, A., Sakamoto, M. & Nakajima, T. (2014). KinecDrone: enhancing somatic sensation to fly in the sky with Kinect and AR.Drone. AH '14, Article 53, 2 pages. DOI=10.1145/2582051.2582104
    Morgan, J.L., (2010) Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience vol. 60(1) 47-59. DOI= 10.1525/bio.2010.60.1.9
    Mueller, F., Graether, E. & Toprak, C. (2013). Joggobot: jogging with a flying robot. CHI EA '13, 2845-2846. DOI=10.1145/2468356.2479541
    Nagi, J., Giusti, A., Di Caro, G.A. & Gambardella, L., M. (2014). Human Control of UAVs using Face Pose Estimates and Hand Gestures. HRI '14, 252-253. DOI=10.1145/2559636.2559833
    Oculus Developers. (2016) Oculus Mobile VR Documentation. Retrieved Apr. 16, 2015 from https://developer.oculus.com/documentation/mobilesdk/latest/
    OpenCV Dev Team. (2015) OpenCV 2.4.9.0 Documentation. Retrieved Apr. 19, 2015 from http://docs.opencv.org/
    Parrot SA, (2015). Bebop Drone Official Website. Retrieved Apr. 19, 2015 from
    http://www.parrot.com/usa/products/bebop-drone/
    Parrot SA, (2015). Method for the intuitive piloting of a drone by means of a remote control (US 20130173088 A1). Retrieved Apr.19, 2015 from
    http://www.google.com/patents/US20130173088
    Pfeil, K., Koh, S. L., & LaViola, J., (2013). Exploring 3d gesture metaphors for interaction with unmanned aerial vehicles. IUI '13, 257-266. DOI=10.1145/2449396.2449429
    Poupyrev, I., Billinghurst, M., Weghorst, S. and Ichikawa, T. (1996). The go-go interaction technique: non-linear mapping for direct manipulation in VR. UIST '96, 79-80. DOI=10.1145/237091.237102
    Samsung Electronics Taiwan. (2016). Samsung Galaxy S6 Edge Product Specification. Retrieved Apr. 16, 2016 from
    http://www.samsung.com/tw/consumer/mobile-phones/smart-phone/galaxy-s/SM-G9250ZKABRI
    Schneider, D. (2014). Flying Selfie Bots: Tag-Along Video Drones Are Here. IEEE Spectrum. Retrieved Apr.19, 2015 from
    http://spectrum.ieee.org/aerospace/aviation/flying-selfie-bots-tagalong-video-drones-are-here
    Squadrone System Inc. (2015) HEXO+ Drone Official Website. Retrieved Apr. 19, 2015 from http://hexoplus.com/
    Srikanth, M., Bala, K. & Durand, F. (2014). Computational rim illumination with aerial robots. CAe '14, 57-66. DOI=10.1145/2630099.2630105
    黃婉婷(2012)。青少年自拍行為之動機、意義及其與自我認同之關係。碩士論文。彰化師範大學,美術系藝術教育碩士班,台灣。
    Description: 碩士
    國立政治大學
    數位內容碩士學位學程
    102462012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102462012
    Data Type: thesis
    Appears in Collections:[數位內容碩士學位學程] 學位論文
    [數位內容碩士學位學程] 學位論文

    Files in This Item:

    File SizeFormat
    201201.pdf47690KbAdobe PDF269View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback