English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51603221      Online Users : 449
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/101130
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/101130


    Title: 根據食材搭配與替代關係設計食譜搜尋的自動完成機制
    Autocomplete Mechanism for Recipe Search by Ingredients Based on Ingredient Complement and Substitution
    Authors: 周冠嶔
    Chou, Kuan Chin
    Contributors: 沈錳坤
    Shan, Man Kwan
    周冠嶔
    Chou, Kuan Chin
    Keywords: 資料採掘
    查詢詞自動完成
    食譜搜尋引擎
    Data Mining
    Query Autocomplete
    Recipe Search Engine
    Date: 2016
    Issue Date: 2016-09-02 00:13:50 (UTC+8)
    Abstract: 「民以食為天」,飲食與我們的生活息息相關。近年來由於食安風暴肆虐,自行烹煮的需求隨之高漲。然而在家自行烹煮時常會面臨不知道該烹煮什麼料理的問題,因此有便利的食譜搜尋系統對烹煮的人而言將是相當方便的。然而使用搜尋系統時,由於我們只知道想用某些特定食材進行烹煮,而不知道哪些食譜含有特定食材,因此在以少數食材進行查詢時不免會得到過多的食譜結果而難以快速找到喜好的食譜。我們建立了一個食譜搜尋的自動完成機制,並依照該機制實做出了食譜搜尋引擎。使用者使用系統進行搜尋時,我們將會依照使用者輸入的食材尋找適合搭配的食材推薦給使用者,幫助使用者在查詢時使用更完整的Query讓搜尋系統可以找到更少更精準的食譜,幫助使用者更快的找到喜歡的食譜。然而只推薦搭配性食材,可能會推薦出與Query中的食材是替代關係的食材,也就是通常不會一起出現的食材,因此我們也進行了替代性食材的研究。給定由兩個食材組成的食材配對,我們研究如何自動的判斷替代性食材。我們將問題轉化成分類問題來解決,並使用One-Class Classification的技術解決分類問題中的Imbalanced Problem。我們使用f1-score觀看One-Class Classification與傳統分類器的比較。經實驗測試,One Class Classification與傳統分類器相比,One Class Classification較能協助我們解決Imbalanced Problem。
    Reference: [1] R. Agrawal and R. Srikant, Fast algorithms for mining association rules. Procedings 20th Internatinal Conference Very Large Data Bases, 1994.
    [2] Y. Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A. L. Barabási, Flavor network and the principles of food pairing. Scientific Reports 1, 2011.
    [3] S. Amano, K. Aizawa, and M. Ogawa, Food category representatives: extracting categories from meal names in food recordings and recipe data. IEEE International Conference on Multimedia Big Data, 2015.
    [4] Z. Bar-Yossef and N. Kraus, Context-sensitive query auto-completion. Proceedings of the 20th International Conference on World Wide Web, 2011.
    [5] A. Blansché, J. Cojan, V. Dufour Lussier, J. Lieber, P. Molli, E. Nauer, H. Skaf Molli, and Y. Toussaint, Taaable 3: adaptation of ingredient quantities and of textual preparations. Proceedings of 18th Internatonal Conference on Case-Based Reasoning Workshop, 2010.
    [6] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet allocation. Journal of Machine Learning Research.
    [7] C. Boscarino, N. J. Koenderink, V. Nedović, and J. L. Top, Automatic extraction of ingredient`s substitutes. Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014.
    [8] F. Cai and M. De Rijke, Learning from homologous queries and semantically related terms for query auto completion. Information Processing & Management, 52(4), 2016.
    [9] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3) 2011.
    [10] M. De Clercq and W. Waegeman, Prediction of Ingredient Combinations using Machine Learning Techniques. Master Thesis, Ghent University, 2014.
    [11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman, Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 1990.
    [12] V. Dufour Lussier, J. Lieber, E. Nauer, and Y. Toussaint, Text Adaptation using Formal Concept Analysis. In Case-Based Reasoning. Research and Development, Springer, 2010.
    [13] P. Forbes and M. Zhu, Content-Boosted Matrix Factorization for Recommender Systems: Experiments with Recipe Recommendation. Proceedings of the 5th ACM Conference on Recommender Systems, 2011.
    [14] J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng, Learning User Reformulation Behavior for Query Auto-Completion. Proceedings of the 37th ACM SIGIR Conference on Research & Development in Information Retrieval, 2014.
    [15] S. S. Khan and M. G. Madden, A Survey of Recent Trends in One Class Classification. Irish Conference on Artificial Intelligence and Cognitive Science, 2009.
    [16] F. F. Kuo, C. T. Li, M. K. Shan, and S. Y. Lee, Intelligent Menu Planning: Recommending Set of Recipes by Ingredients. Proceedings of the ACM Multimedia Workshop on Multimedia for Cooking and Eating Activities, 2012.
    [17] H. Larkin and D. Bridge, Subs and Sandwiches: Replacing One Ingredient by Another. Workshop Programme of the 22nd International Conference on Case-Based Reasoning, 2014.
    [18] Z. Liao, D. Jiang, E. Chen, J. Pei, H. Cao, and H. Li, Mining Concept Sequences from Large-Scale Search Logs for Context-Aware Query Suggestion. ACM Transactions on Intelligent Systems and Technology, 3(1), 2011.
    [19] A. L. Maas and A. Y. Ng, A Probabilistic Model for Semantic Word Vectors. NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2010.
    [20] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mcclosky, The Stanford Corenlp Natural Language Processing Toolkit. Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2014.
    [21] J. Mcauley, R. Pandey, and J. Leskovec, Inferring Networks of Substitutable and Complementary Products. Proceedings of the 21th ACM International Conference on Knowledge Discovery and Data Mining, 2015.
    [22] T. D. Nguyen, D. T. N. Nguyen, and Y. Kiyoki, A Regional Food`s Features Extraction Algorithm and Its Application. Proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities, 2013.
    [23] Y. Seki and K. Ono, Discriminating Practical Recipes Based on Content Characteristics in Popular Social Recipes. Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014.
    [24] Y. Shidochi, T. Takahashi, I. Ide, and H. Murase, Finding Replaceable Materials in Cooking Recipe Texts Considering Characteristic Cooking Actions. Proceedings of the ACM Multimedia Workshop on Multimedia for Cooking and Eating Activities, 2009.
    [25] M. Shokouhi and K. Radinsky, Time-Sensitive Query Auto-Completion. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2012.
    [26] T. H. Silva, P. O. De Melo, J. Almeida, M. Musolesi, and A. Loureiro, You are What You Eat (and Drink): Identifying Cultural Boundaries by Analyzing Food & Drink Habits in Foursquare. Proceedings of 8th AAAI International Conference on Weblogs and Social Media, 2014.
    [27] D. M. Tax, One-Class Classification. Ph.D Thesis, Delft University of Technology, 2001.
    [28] C. Y. Teng, Y. R. Lin, and L. A. Adamic, Recipe Recommendation using Ingredient Networks. Proceedings of the 4th Annual ACM Web Science Conference, 2012.
    [29] W. G. Teng, M. J. Hsieh, and M. S. Chen, A Statistical Framework for Mining Substitution Rules. Knowledge and Information Systems, 7(2), 2005.
    [30] K. Walter, M. Minor, and R. Bergmann, Workflow Extraction from Cooking Recipes. Proceedings of the International Conference on Case-Based Reasoning Workshops, 2011.
    [31] R. West, R. W. White, and E. Horvitz, From Cookies to Cooks: Insights on Dietary Patterns via Analysis of Web Usage Logs. Proceedings of the 22nd International Conference on World Wide Web, 2013.
    [32] S. Whiting and J. M. Jose, Recent and Robust Query Auto-Completion. Proceedings of the 23rd International Conference on World Wide Web, 2014.
    [33] M. Wiegand, B. Roth, and D. Klakow, Knowledge Acquisition with Natural Language Processing in the Food Domain: Potential and Challenges. Proceedings of the ECAI-Workshop on Cooking with Computers, 2012.
    [34] S. Yokoi, K. Doman, T. Hirayama, I. Ide, D. Deguchi, and H. Murase, Typicality Analysis of the Combination of Ingredients in a Cooking Recipe for Assisting the Arrangement of Ingredients. IEEE International Conference on Multimedia & Expo Workshops, 2015.
    [35] 呂耀茹, 《由食譜資料探勘料理特徵樣式》. 國立政治大學資訊科學系碩士論文, 2016.
    Description: 碩士
    國立政治大學
    資訊科學學系
    102753024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102753024
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302401.pdf2132KbAdobe PDF246View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback