English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 110944/141864 (78%)
Visitors : 48037832      Online Users : 992
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/106924


    Title: 以三維共軛覘標提昇三維雷射掃描儀掃描精度及建物效益之研究
    Study on promoting the accuracy and the efficiency of scanning buildings by 3D laser scanner using conjugated 3D sphere markers
    Authors: 施宇鴻
    Shi, Yu Hong
    Contributors: 林老生
    Lin, Lao Sheng
    施宇鴻
    Shi, Yu Hong
    Keywords: 三維共軛球型覘標
    三維雷射掃描儀
    距離誤差檢定
    掃描效益規劃
    Conjugated 3D sphere marker
    3D laser scanner
    Distance error calibration
    Scanning plan efficiency
    Date: 2015
    Issue Date: 2017-03-01 17:22:48 (UTC+8)
    Abstract: 本研究以雷射掃描儀作為掃描建築物之工具,採用三維球型覘標作為相鄰測站間之共軛覘標,探討雷射掃描儀對於不同尺寸之共軛覘標在不同掃描距離條件下之球心坐標精度;及利用檢校場之固定樁位,求得雷射掃描儀與各覘標之距離誤差量,並建立距離誤差量改正模式;最後,提出最佳之掃描方式。
    本研究分別選定三個場地作為不同實驗區,先選定一處室內場,以三種尺寸之三維共軛球型覘標,規劃距離儀器原點5公尺至40公尺,以每5公尺之等距離方式分布,並依序掃描,以求得球心坐標精度;再選定台中國土測繪中心之距離標準基線場,以雷射掃描儀直接掃描三段距離,分別為5公尺、23公尺及31公尺,以求得掃描儀之距離誤差;最後選定一建物,以一般掃描及較佳掃描之方式各別進行建築物掃描,以分析兩者間之效益。
    依成果顯示,於相同掃描距離下,三維共軛球型覘標尺寸越小,其球心坐標精度越差;相同三維共軛球型覘標之尺寸,其球心坐標精度將隨著掃描距離增加而越差。另外,透過距離檢校場,可得知該儀器之系統性誤差,並建立其距離誤差改正模式,用以改正所獲取之點雲之系統性誤差,以提升三維點雲模型之精度。
    最後將較佳掃描之方式與一般掃描情況下,進行實際掃描並比較分析兩者之數據,依成果顯示,於一般掃描作業及較佳掃描作業情況下,直徑14.5公分之三維共軛球型覘標較直徑12公分之三維共軛球型覘標,皆節省25%之掃描時間。而兩者之點雲模型精度相仿,且皆符合建築掃描精度要求於1 cm內之精度,可以得知最佳掃描效益能夠縮短掃描作業時間,並提升點雲模型之精度。
    This research uses laser scanner as the scanning tool, and 3D sphere marker as the conjugated marker between neighborhood stations, to investigate the accuracy of sphere center coordinates of different-sized 3D sphere markers at different scanning distances; calculate the distance errors between laser scanner and every marker with the fixed survey stations in the calibration field and establish distance error correction formula. At last, propose the best way to scan buildings according to the experiment results.
    Three different fields are selected as experiment areas. First, choose an indoor field, and scan three different-sized conjugated 3D sphere markers. Every conjugated marker is scanned at distances of 5 to 40 m at an interval of 5 m. Second, choose the standard baseline field of National Land Surveying and Mapping Center in Taichung as the experiment area, and use laser scanner to measure the distances of 5, 23 and 31 m to calculate scanning distance errors. At last, choose a building as scanning target, scan it in general way and efficient way respectively, and analyze the differences between the two methods.
    According to experiment results, the smaller the conjugated 3D sphere marker is, the worse the accuracy of sphere center coordinate will be at the same scanning distance; as the scanning distance gets longer, the accuracy of sphere center coordinate will decrease with the same size conjugated 3D sphere marker. On the other hand, the systematic error of the instrument can be known through the distance calibration field. With a known systematic error, a distance correction formula is established to correct the systematic error of the point cloud, and hence improve the accuracy of 3D point cloud model.
    Eventually, compare and analyze the differences of the results getting by the most efficient way and the general way of scanning. The results show that both scanning methods save 25% scanning time using 14.5-cm-diameter conjugated 3D sphere marker compare to using 12-cm-diameter conjugated 3D sphere marker. And the data represent that the point cloud models in the two situations have similar accuracy, and the accuracy of each model is better than 1 cm, which means they both meet the precision requirement of building scanning. Consequently, the most efficient way of scanning mentioned in this research can shorten the time of scanning work and improve the accuracy of point cloud model.
    Reference: 王正忠,2002,以近景攝影測量進行模型式建物重建,國立成功大學碩士論文,台南。
    李樹莊,2011,近景掃描應用在逆向工程技術重建3D實體之研究,逢甲大學碩士論文,台中。
    呂曜宇,2007,地面光達點雲資料特性探討及分類應用,國立成功大學碩士論文,台南。
    林立哲,2010,融合光達點雲及航照影像於三維房屋模型之變遷偵測,國立中央大學碩士論文,桃園。
    林老生,2012,e-GPS水準測量精度研究,台灣土地研究,15(2):35-58。
    林宜君,2009,以數位方法再現臺灣傳統大木構架丈篙之可行性研究,國立成功大學博士論文,台南。
    林怡君,2013,利用最小一乘法在地籍坐標轉換資料偵錯之研究,國立政治大學碩士論文,台北。
    林卓群,2006,Lidar高精度數值地形應用於崩塌地區快速調查研究,國立成功大學碩士論文,台南。
    林家如,2011,多次掃描套疊分析系統誤差之影響因素探討-以邊坡監測模式為例,國立金門大學碩士論文,金門。
    林聰成、尤瑞哲、游勳喬,2003,應用空載雷射掃描於數值表面模型的建置,第一屆數位地球國際研討會論文集。
    吳宗江,2006,以「天頂及法線變異量測法」分析裸露坡地地形變化之研究,國立中興大學博士論文,台中。
    施宇鴻、吳宗江,2012,地面光達掃描作業高效益規劃之研究─以建築物為例,第31屆測量及空間資訊學術研討會,台北。
    張明政,2004,三維雷射掃描技術應用於戶地測量之研究─以建物為例,國立中興大學碩士論文,台中。
    張家興,2000,逆向工程技術研究─點資料的處理和曲面重建,國立台灣大學碩士論文,台北。
    粘惎非,2004,反射標與距離檢定對三維雷射掃描儀精度影響評估-以MensiG200為例,國立交通大學碩士論文,新竹。
    陳朝瑞,2006,共軛球與反射標在不同距離下對三維雷射掃描儀精度影響之研究,國立交通大學碩士論文,新竹。
    陳煜文,2015,應用地面光達監測結構物之精度分析,國立台北科技大學碩士論文,台北。
    陳翠慧,2007,運用3D 雷射掃描技術探討臺灣日治時期寺廟建築疊斗式木構架之尺寸計畫,國立成功大學碩士論文,台南。
    曾欣郁,2011,三維雷射掃描技術應用於傳統建築灰泥壁畫破壞檢測,國立金門大學碩士論文,金門。
    曾威雄,2012,三維雷射掃描儀在松山菸廠歷史建築應用之研究,中國文化大學碩士論文,台北。
    曾義星、史天元,2004,三維雷射掃描技術及其在工程測量上之應用,土木水利。
    曾義星、史天元,2003,雷射掃描儀「新一代測量利器」,科學發展第365期,第16-21頁。
    曾義星、林見福、蔡漢龍、陳鶴欽、曾耀賢,2008,地面光達系統誤差分析及校正,地籍測量學會會刊,第二十七卷,第一期,第39-50頁。
    蔡宗旂,2007,3D 雷射掃描在歷史建築數位模型之建構與應用-以長福巖三峽祖師廟為例,國立成功大學碩士論文,台南。
    蔡佳琳,2010,不同共軛覘標尺寸對於三維點雲模型套疊精度影響之研究-以FARO 120地面光達為例,國立金門大學碩士論文,金門。
    蔡漢龍,2006,地面光達幾何校正系統設計與實施,國立成功大學碩士論文,台南。
    鄧表揚,2007,應用三維雷射掃描技術於大型儲油槽之變形分析,逢甲大學碩士論文,台中。
    劉榮信,2009,地面3-DLiDAR技術應用於重要點位裸露邊坡地滑監測模式建立之研究,國防大學理工學院碩士論文,桃園。
    劉燈烈,2004,地面光達點雲資料的平差結合與影像敷貼,國立成功大學碩士論文,台南。
    賴志凱,2004,地面雷射掃描儀的精度分析與檢定,國立成功大學碩士論文,台南。
    賴澄漂、林騰威、賴澄燦,2008,水下探勘技術應用,第十屆水下技術研討會暨國科會成果發表會,高雄。
    Adas, A. A., 2013, Wooden Bay Window (Rowshan) Conservation in Saudi-Hejazi Heritage Buildings, XXIV International CIPA Symposium, 2-6 September 2013, Strasbourg, France.
    Albert I., and Eric M., 2003, Calibration Verification Facilities for Long Range Laser Scanners, Optech, Incorporated, Canada.
    Alharthy, A. and Bethel, J., 2002, Building Extraction and Reconstruction From LIDAR Data, Proceedings of ACSM_ASPRS.
    Becerik-Gerber, B., Jazizadeh, F., Kavulya, G., and Calis, G., 2011, Assessment of Target Types and Layouts in 3D Laser Scanning for Registration Accuracy, Automation in Construction, vol. 20, pp. 649-658.
    Beck, L. S., 2013, Digital Documentation the Conservation of Cultural Heritage: Finding the Practical in Best Practice, XXIV International CIPA Symposium, 2-6 September 2013, Strasbourg, France.
    Boehler, W., Heinz, G., and Marbs, A., 2001, The Potential of Non-contact Close Range Laser Scanners for Cultural Heritage Recording, Proceedings of CIPA International Symposium, Potsdam, Germany.
    Firchau, S. and Wiechart, A., 2005, Accurate On-Time Geo-Information for Disaster Management and Disaster Prevention by Precise Airborne Lidar Scanning, Geo-information for Disaster Management, pp. 109-119.
    Franaszek, M., Cheok, G. S., and Witzgall, C., 2009, Fast Automatic Registration of Range Image From 3D Imaging Systems Using Sphere Targets, Automation in Construction, Vol. 18, pp. 265-274.
    Ghilani, C. D., 2009, Adjustment Computations:Spatial Data Analysis, 5th Edition, John Wiley & Sons, Inc.
    Haubt, R. A., 2013, Virtual Heritage Archives: Building a Centralized Australian Rock art Archive, XXIV International CIPA Symposium, 2-6 September 2013, Strasbourg, France.
    Isheil, A., Gonnet, J. P., Joannic, D., and Fontaine F., 2011, Systematic Error Correction of a 3D Laser Scanning Measurement Device, Optics and Lasers in Engineering, vol. 49, pp. 16-24.
    Lichti D.D., Gordon S.J., and Stewart M.P., 2002, Ground-Based Laser Scanners: Operaton, Systems and Appliations, GEOMATICA, 56, No.1 pp. 21-23
    Lima, E. H. and Suter D., 2009, 3D terrestrial LIDAR Classifications with Super-Voxels and Multi-Scale Conditional Random Fields, Computer-Aided Design Vol.41,pp.701-710.
    Ruther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., Matmon, A., and H, L. K., 2009, Laser Scanning for Conservation and Research of African Cultural Heritage Sites: The Case Study of Wonderwerk Cave, South Africa, Journal of Archaelolgical Science 37, P. 1847-1856.
    Schnabel R., Wahl R., and Klein R., 2006, Shape Detection in Point Clouds, Tech. Rep. CG-2006-2, Univeritat Bonn.
    Schnabel R., Wahl R., Wessel R., and Klein R., 2007, Shape The accuracy of sphere center coordinate in 3D Point Clouds, Tech. Rep. CG-2007-1, Univeritat Bonn.
    Stafne M. A., Mitchell L. D., and West R. L., 2000, Positional Calibration of Galvanometric Scanner Used in Laser Doppler Vibrometers, Measurement,vol. 28, P47-P59.
    Stuart Gordon, Derek D. Lichti, Michael P. Stewart, and Maria Tsakiri, 2001, Metric Performance of a High – Resolution Laser Scanner, Proceedings of SPIE Vol. 4309.
    Vosselman, G., 2000, Slope-Based Filtering of Laser Altimetry Data, Int. Arch.Of Photogrammetry and Remote Sensing, Vol. 33, Part B3/2, pp. 935-942.
    Wehr, A. and Lohr, U., 1999, Airborne Laser Scanning – an Introductionand Overview, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp. 68-82.
    Zhao, Q. and Wang, W., 2009, Calibration of Laser Scanning System Based on a 2D Ball Plate, Measurement, vol. 42, pp. 963-968.
    Zhou S., Guan Y., Zhan X., and Lu T., 2008, Robust Algorithm for Fitting Sphere to 3D Point Clouds in Terrestrial Laser Scanning, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 37. Part B5. Beijing.
    Description: 碩士
    國立政治大學
    地政學系
    101257006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101257006
    Data Type: thesis
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    700601.pdf4092KbAdobe PDF2127View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback