政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/110480
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140903 (78%)
Visitors : 46052567      Online Users : 784
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110480


    Title: Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder
    Authors: Roósz, Gergö;Lin, Yu-Cheng;Iglói, Ferenc
    林瑜琤
    Contributors: 應物所
    Date: 2017-02
    Issue Date: 2017-06-23 17:29:04 (UTC+8)
    Abstract: By means of free fermionic techniques combined with multiple precision arithmetic we study the time evolution of the average magnetization, $\\overline{m}(t)$, of the random transverse-field Ising chain after global quenches. We observe different relaxation behaviors for quenches starting from different initial states to the critical point. Starting from a fully ordered initial state, the relaxation is logarithmically slow described by $\\overline{m}(t)\\sim {\\mathrm{ln}}^{a}t$, and in a finite sample of length L the average magnetization saturates at a size-dependent plateau ${\\overline{m}}_{p}(L)\\sim {L}^{-b};$ here the two exponents satisfy the relation $b/a=\\psi =1/2$. Starting from a fully disordered initial state, the magnetization stays at zero for a period of time until $t={t}_{{\\rm{d}}}$ with $\\mathrm{ln}{t}_{{\\rm{d}}}\\sim {L}^{\\psi }$ and then starts to increase until it saturates to an asymptotic value ${\\overline{m}}_{p}(L)\\sim {L}^{-b^{\\prime} }$, with $b^{\\prime} \\approx 1.5$. For both quenching protocols, finite-size scaling is satisfied in terms of the scaled variable $\\mathrm{ln}t/{L}^{\\psi }$. Furthermore, the distribution of long-time limiting values of the magnetization shows that the typical and the average values scale differently and the average is governed by rare events. The non-equilibrium dynamical behavior of the magnetization is explained through semi-classical theory.
    Relation: New Journal of Physics,19 , 023055
    Data Type: article
    DOI link: http://dx.doi.org/10.1088/1367-2630/aa60e6
    DOI: 10.1088/1367-2630/aa60e6
    Appears in Collections:[Graduate Institute of Applied Physics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    055.pdf1092KbAdobe PDF2642View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback