English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 95905/126495 (76%)
Visitors : 31779663      Online Users : 390
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/112707


    Title: 大數據分析與個人資料保護之衝突:從收視行為調查談起
    The clash of big data analytics and personal data protection:from the audience measurement perspective
    Authors: 鄭美華
    Cheng, Mei Hua
    Contributors: 劉定基
    Liu, Ting Chi
    鄭美華
    Cheng, Mei Hua
    Keywords: 大數據
    收視行為調查
    個人資料保護
    智慧隱私
    過濾罩效應
    Big data
    Audience measurement
    Personal data protection
    Intellectual privacy
    Filter bubble
    Date: 2017
    Issue Date: 2017-09-13 14:58:23 (UTC+8)
    Abstract: 隨著數位化時代來臨,「大數據」被視為解決傳統收視行為調查弊病的解方;然而,在利用此一新興工具時,大量被鉅細靡遺留存下來的個人收視行為紀錄,也引發了對於智慧隱私的威脅、過濾罩效應,甚至是因自動化演算程式而產生歧視等種種問題。
    在比較法上,關於個人收視行為紀錄的保護,不論是採取部門式立法的美國,或是制定有全面性個人資料保護規範的歐洲,均有所著墨;但在迎接大數據分析的挑戰時,相關規範皆面臨個人資料保護與個人資料利用之間的衝突與拉鋸。
    我國也不例外,隨著個人資料保護意識的提升,其與個人資料利用之間的關係也愈趨緊張。雖然在現行個人資料保護法下,以大數據分析開展收視行為的調查及應用,同時兼顧個人隱私的保障,並非毫無機會;但若要在個人資料保護與個人資料利用的緊張關係之間尋求更佳的平衡點,現行法仍有未臻周全之處,有待修法解決。
    本文除了就現行個人資料保護法下,以大數據分析進行收視行為調查,提供相關執行面的建議外;也嘗試針對現行法有待改善的部分,提出未來修法的建議方向。期待在大數據應用不斷發展的同時,一併打造出足以令人信賴的個人資料利用環境。
    With the coming of the digital age, “big data” is believed to be the panacea for the problems of traditional audience measurement methods. Nevertheless, a great deal of detailed personal viewing behaviors is collected and stored while using this emerging tool. As a result, it raises concerns over intellectual privacy, filter bubble, and even discrimination which results from automatic parsing algorithm. From the comparative law perspective, both the United States, which adopts a sectoral data protection framework, and the European Union, which has a comprehensive personal data protection law, have already addressed the need to protect information regarding personal viewing behaviors. When facing the challenges of big data analytics; however, both legal regimes are still confronted with conflicts between the protection and use of personal data. There is no exception for Taiwan. With the rising awareness of personal data protection, the tension between the use and protection of personal data is also increased. Although under the current Personal Information Protection Act (PIPA), it’s possible to employ big data analytics on audience measurement, while at the same time, conforming to the minimum protection of individual privacy, if we want to strike a better balance between data protection and data use, the PIPA needs to be revised. In addition to providing practical suggestions for conducting audience measurement using big data analytics in accordance with the PIPA, this thesis also tries to provide a proposal for future revision of the PIPA. This thesis hopes that as big data applications continue to develop; we can also foster a more trustworthy environment for the use of personal data.
    Reference: 一、 中文文獻
    (一) 專書
    法治斌、董保成,(2010), 憲法新論,四版。台北市:元照。
    林照真,(2009)。收視率新聞學:台灣電視新聞商品化。台灣:聯經。
    國家通訊傳播委員會,(2015),103年通訊傳播績效報告。台灣:國家通訊傳播委員會。
    國家通訊傳播委員會,(2016),104年通訊傳播績效報告。台灣:國家通訊傳播委員會。
    黃葳威,(2004)。閱聽人與媒體文化。台北市:揚智文化。
    劉佐國、李世德,(2015)。個人資料保護法釋義與實務(第二版)—如何面臨個資保護的新時代。台北市:碁峰資訊。
    PARISER, E., (2012). THE FILTER BUBBLE: WHAT THE INTERNET IS HIDING FROM YOU, 搜尋引擎沒告訴你的事。台灣:左岸文化。
    GURIN, J., (2015). OPEN DATA NOW: THE SECRET TO HOT STARTUPS, SMART INVESTING, SAVVY MARKETING, AND FAST INNOVATION, 開放資料大商機—當大數據全部免費!創新、創業、投資、行銷關鍵新趨勢。台灣:時報。
    GOODMAN, M.,(2016). FUTURE CRIMES , 未來的犯罪。新北市:木馬文化。
    (二) 專書論文
    何吉森,(2016),大數據與隱私權:大數據的治理與監理,收錄於:劉幼俐主編,大數據與未來傳播,頁65-89。
    周韻采、劉倚帆、葉奇鑫,(2015),去識別化資料釋出的規管制度研議,收錄於:彭芸主編,「大數據、新媒體、使用者」論文集,頁15-35。
    劉幼俐、徐也翔,(2016),視訊媒體與大數據分析應用策略,收錄於:劉幼俐主編,大數據與未來傳播,頁225-248。
    (三) 期刊與研討會論文
    伍偉華,(2014) 。初探個人資料保護法之特殊侵權行為要件。月旦裁判時報,第30期,頁115-122。
    邱忠義,(2014) 。談個人資料保護法之間接識別。月旦裁判時報,第30期,頁95-103。
    范姜真媺,(2009)。他律與自律共構之個人資料保護法制—以日本有關民間法制為主。東吳法律學報,第21卷第1期,頁163-200。
    范姜真媺,(2012)。個人資料自主權之保護與個人資料之合理利用。法學叢刊,第225期,頁69-104。
    范姜真媺,(2013)。個人資料保護法關於「個人資料」保護範圍之檢討,東海大學法學研究,第41期,頁91-123。
    范姜真媺,(2013)。醫學研究與個人資料保護—以日本疫學研究為中心。科技法學新論,第10卷第1期,頁61-113。
    范姜真媺,(2014)。日本個人編號法對我國之借鏡—以個人資料保護監督機制之建立為主,東吳法學,第26卷第2期,頁1-33。
    范姜真媺,(2016)。個人醫療資料之保護與利用—以全民健康保險為中心。法學叢刊,第243期,頁41-72。
    林家慶,(2014) 。「電信業者別」能否揭露?個人資料保護與公共利益維護不能兼顧?-評臺灣台北地方法院臺北簡易庭103年度北小字第1360號民事判決。月旦裁判時報,第30期,頁139-146。
    林裕嘉,(2016)。我國個人資料去識別化法制及實務發展概述,我國個人資料去識別化法制及實務發展概述,科技法律透析,第28卷第6期,頁53-63。
    徐仕瑋,(2014)。個資法所保護個人資料之範圍界定。月旦裁判時報,第30期,頁123-138。
    翁清坤,(2016)。網路上隱私權政策之效力。臺大法學論叢,第45卷第1期,頁151-248。
    張永宏,(2015)。試評個人資料保護法適用上的幾個問題。月旦裁判時報,第31期,頁61-65。
    張陳弘,(2016)。個人資料之認定—個人資料保護法適用之啟動閥。法令月刊,第67卷第5期,頁67-101。
    黃聿清、莊春發,(2011)。用收視質量度電視節目品質:臺灣公共電視臺的經驗,中華傳播學會2011年年會論文。
    黃翰義,(2015)。自直接識別性及公共利益之觀點論個人資料保護法之缺失,月旦裁判時報,第31期,頁66-73。
    詹鎮榮,(2015)。公務機關間個人資料之傳遞—以臺灣桃園地方法院行政訴訟102年度簡字第2號判決出發。法學叢刊,第60卷第1期,頁1-27。
    虞晨曦、劉世筠,(1994)。迎接收視率調查新紀元。廣告雜誌,第38期,頁84-87。
    劉定基,(2009)。欺罔與不公平資訊行為之規範—以美國聯邦交易委員會的管制案例為中心。公平交易季刊,第17卷第4期,頁57-91。
    劉定基,(2012)。個人資料的定義、保護原則與個人資料保護法適用的例外── 以監視錄影為例(上)。月旦法學教室,第115期,頁42-54。
    劉定基,(2013)。析論個人資料保護法上「當事人同意」的概念。月旦法學雜誌第218期,頁146-167。
    (四) 委託研究計畫
    呂海涵、何文章、彭朋群、席鈺芬、王麗余與林佳宏,民99。《有線廣播電視數位化加值服務及光纖網路監控系統研究》。台北:國家通訊傳播委員會。
    范姜真媺主持、高啟中、翁清坤與李寧修協同主持,民104。《我國電信業及電信加值網路業個人資料保護與監管機制之研究》。台北:國家發展委員會。
    范姜真媺主持、劉定基與李寧修協同主持,民105。《歐盟及日本個人資料保護立法最新發展之分析報告》委託研究案期末報告。台北:法務部。
    陳清河、胡元輝、李淳、陳光毅、 施素明、任正民…宋欣穎,2016。《數位電視發展藍圖規劃構想研究報告》。台北:交通部。
    (五) 碩、博士論文
    邱慧仙(2012),數位時代電視收視率量測機制變革,未出版之博士論文,世新大學,傳播博士學位學程,台北。
    許玉芳(2009)。電視數位化後收視調查機制之研究。未出版之碩士論文,政治大學,廣告研究所,台北。
    陳紹宏(2012),有線電視數位化新媒體收視行為調查方法探討與研究-以K公司為例,未出版之碩士論文,長庚大學,管理學院碩士學位學程在職專班經營管理組,桃園。
    魏宏展(2002),收視質於廣告媒體企劃之應用探討,未出版之碩士論文,政治大學,廣告研究所,台北。
    (六) 其他資料
    王雲(2015年5月)。在深不可測的Big Data時代尋找新契機。http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=9&cad=rja&uact=8&ved=0ahUKEwiF4eHJ8OTLAhVBPqYKHRSfDEoQFghMMAg&url=http%3A%2F%2Fwww.nspark.org.tw%2Fdocumentlibrary%2Fview%2F131%2F19_Doc_20150514101242.pdf&usg=AFQjCNERPxCFP50suquBQyofPXNeUS6nRw
    台灣智庫<國會政策中心>(2012年12月31日)。收視質調查與收視率稽核─數位媒體時代的收視調查機制。http://www.taiwanthinktank.org/page/chinese_attachment_1/2604/.pdf
    (七) 網路資料
    呂紹玉(2016年9月9日)。別守著點擊數字,要知道誰看到!尼爾森數位廣告收視率幫助廣告主精準掌握投放效果。科技新報。取自http://technews.tw/2016/09/09/nielsens-dar-tool-for-digital-ad-market/
    林玉凡(2015年11月7日)。數位收視調查市場的全新賽局。大數據。取自http://group.dailyview.tw/2015/11/07/%E6%95%B8%E4%BD%8D%E6%94%B6%E8%A6%96%E8%AA%BF%E6%9F%A5%E5%B8%82%E5%A0%B4%E7%9A%84%E5%85%A8%E6%96%B0%E8%B3%BD%E5%B1%80/
    邱慧仙(2017年1月9日)。大數據運用與收視率調查-機上盒篇。取自http://shucidi.strikingly.com/blog/85266610ca7
    美國節目收視調查方法。公共電視台研究發展部。取自http://web.pts.org.tw/~rnd/p2/000726-2.htm
    挑戰數位匯流時代數位媒體收視行為調查新任務『新媒體閱聽行為研究實驗室』正式成軍(2013年3月6日)。中央通訊社。取自http://www.cna.com.tw/postwrite/Detail/122094.aspx#.WSrUTmiGOUk
    秦裕中(2006年6月30日)。陳剛信轟AGB尼爾森殘害台灣媒體。自由時報。取自http://ent.ltn.com.tw/news/paper/79199
    孫憶明(2014年2月10日)。大數據(Big Data)改變未來教育樣貌的三種可能。關鍵評論。取自http://www.thenewslens.com/post/24794/
    陳麗娟(2004年2月25日)。收視率過度推論反失真。蘋果日報。取自http://www.appledaily.com.tw/appledaily/article/forum/20040225/737139/
    從 Google Analytics 網站分析元素看電視收視率(2014年12月16日)。Punchline娛樂重擊。取自http://punchline.asia/archives/6988
    黃兆璽(2006年4月13日)。五台嗆聲:尼爾森收視率謀殺電視業。聯合報。取自https://pttweb.tw/thread/m-1145123862-a-13b
    電視可按讚 挑戰收視率調查(2015年4月29日)。大紀元。取自http://www.epochtimes.com/b5/15/4/29/n4423319.htm
    靠「大數據」顛覆傳統教育,線上教育讓壞學生想不愛上課都不行(2014年5月7日)。科技橘報。取自http://buzzorange.com/techorange/2014/05/07/big-data-is-the-key-of-online-edu/
    鄭祐銓(2016年3月16日)。提升顧客保留率,三大電商龍頭教你如何黏住客戶!SmartM 新網路科技x 新工作職缺。取自https://www.smartm.com.tw/Article/32313438cea3
    鄭偉柏(2006年6月30日)。鄭優轟AGB尼爾森收視率失真。蘋果日報。取自http://www.appledaily.com.tw/appledaily/article/property/20060630/2714685
    Big Data:未來醫療的終極武器(2014年6月15日)。科技新報。取自http://technews.tw/2014/06/15/big-data%ef%bc%9a%e6%9c%aa%e4%be%86%e9%86%ab%e7%99%82%e7%9a%84%e7%b5%82%e6%a5%b5%e6%ad%a6%e5%99%a8/。
    Bruce(2014年3月)。隨著科技而進化的廣告製作,未來是? G!VOICE第64期。取自http://brand.gamania.com/gvoice/vol64/tw/columns/62_ad.htm
    Maple(2016年7月21日)。台劇就是爛?收視率無效?爛劇淹沒好劇的怪現狀。娛樂重擊。取自http://punchline.asia/archives/29089
    NCC協調不再公佈1分鐘電視收視率(2007年4月11日)。大紀元。取自http://www.epochtimes.com/b5/7/4/11/n1675333.htm
    Pingwest(2017年4月23日)。一個螢幕同時顯示 10 個內容?這家矽谷公司做到了。3C新報。取自http://ccc.technews.tw/2017/04/23/silicon-valley-startup-mirraviz-makes-multiview-screen-hi-quality-and-super-cheap/

    二、 外文文獻
    (一) 專書
    MCQUAIL, D., (1992). MEDIA PERFORMANCE: MASS COMMUNICATION AND THE PUBLIC INTEREST.
    MAYER-SCHÖNBERGER, V. & CUKIER, K., (2013). BIG DATA.
    SURDAK, C., (2014). DATA CRUSH: HOW THE INFORMATION TIDAL WAVE IS DRIVING NEW BUSINESS OPPORTUNITIES.
    SUNSTEIN, C., (2002). REPUBLIC.COM.
    SOLOVE, J. D., (2004). THE DIGITAL PERSON.
    TUROW, J., (2011). THE DAILY YOU.
    RICHARDS, N., (2015). INTELLECTUAL PRIVACY.
    WESTIN, F. A., (1967). PRIVACY AND FREEDOM.
    (二) 期刊論文
    Entman, M. R. & Wildman, S. S., (1992). Reconciling Economic and Non‐Economic Perspectives on Media Policy: Transcending the “Marketplace of Ideas”, 42 JCOMMUN. 5.
    Drosatos G., Tasidou A., & Efraimidis P.S, (2012). Privacy-Preserving Television Audience Measurement Using Smart TVs, 376 IFIP AICT 223.
    Schwartz, M. P. & Solove, J. D., (2011). The Pll Problem: Privacy and A New Concept of Personally Identifiable Information, 86 N.Y.U.L. REV. 1814.
    Solove, J. D., (2013). Introduction: Privacy Self-management and the Consent Dilemma, 126 HARV. L. REV. 1880.
    Tene, O. & Polonetsky, J., (2013). Big data for all:privacy and user control in the age of analytics, 11 NW. J. TECH. & INTELL. PROP. 239.
    Warren, D. S. & Brandies, D. L., (1890). The right to Privacy, 4 HARV. L. REV. 193.
    Whitman, Q. J., (2004). The Two Western Cultures of Privacy: Dignity versus Liberty, 113 YALE L.J. 1151.
    (三) 其他資料
    Article 29 Data Prot. Working Party, Opinion 04/2007 on the Concept of Personal Data, No. 01248/07/EN, WP 136 (June 20, 2007), http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2007/wp136_en.pdf
    Article 29 Data Prot. Working Party, Opinion 15/2011 on the definition of consent, No. 01197/11/EN, WP 187 (July 13, 2011), http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp187_en.pdf
    Article 29 Data Prot. Working Party, Opinion 06/2013 on open data and public sector information (‘PSI’) 12, No. 1021/00/EN, WP 207 (June 5, 2013), http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2013/wp207_en.pdf.
    Article 29 Data Prot. Working Party, Opinion 05/2014 Anonypisation Techniques, No. 0829/14/EN, WP 216 (Apr. 10, 2014), https://cnpd.public.lu/fr/publications/groupe-art29/wp216_en.pdf
    DiCerbo, K. & Behrens, J., Impacts of the Digital Ocean on Education, (2014), https://research.pearson.com/content/plc/prkc/uk/open-ideas/en/articles/a-tidal-wave-of-data/_jcr_content/par/articledownloadcompo/file.res/3897.Digital_Ocean_web.pdf.
    European Data Protection Supervisor, Towards a new digital ethics:Data, dignity and technology, (Sep. 11, 2015) https://edps.europa.eu/sites/edp/files/publication/15-09-11_data_ethics_en.pdf
    Executive Office of the President, Big Data: Seizing Opportunities, Preserving Values, (2014) https://bigdatawg.nist.gov/pdf/big_data_privacy_report_may_1_2014.pdf.
    Executive Office of the President and President’s Council of Advisors on Science & Technology, Report To The President: Big Data and Privacy: A Technological Perspective, (2014) https://bigdatawg.nist.gov/pdf/pcast_big_data_and_privacy_-_may_2014.pdf.
    Federal Communications Commission, Annual Assessment for the Status of Competition in the Market for the Delivery of Video Programming, MB Docket No. 15-158, Seventeenth Report, 31 FCC Rcd, (2016), https://www.fcc.gov/document/17th-annual-video-competition-report .
    Federal Communications Commission, In the Matter of Protecting and Promoting the Open Internet GN Docket No. 14-286, FCC Rcd (2016), https://apps.fcc.gov/edocs_public/attachmatch/FCC-15-24A1.pdf .
    Federal Communications Commission, In the Matter of Protecting of Customers of Broadband and Other Telecommunications Services, Notice of proposed Rulemaking, WC Docket No. 16-106, 30 FCC Rcd (2016), https://apps.fcc.gov/edocs_public/attachmatch/FCC-16-148A1.pdf
    IBM, Smarter Healthcare in Canada: Redefining Value and Success (2012) https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=HPW03005CAEN
    Information Commissioner’s Office, Anonymisation: managing data protection risk code of practice, (Nov. 2012) https://ico.org.uk/media/1061/anonymisation-code.pdf.
    Information Commissioner’s Office, Feedback request – profiling and automated decision-making, (Apr. 6, 2017) https://ico.org.uk/media/2013894/ico-feedback-request-profiling-and-automated-decision-making.pdf
    Telecommunication Standardization Sector of ITU, HSTP-IPTV-AM101 - Introduction to the ITU-T H.741-series - A new video engagement audience measurement standard, (Nov. 8, 2013) http://www.itu.int/pub/T-TUT-IPTV-2013-PITD
    World Economic Forum, Unlocking the Value of Personal Data: From Collection to Usage (2013) http://www3.weforum.org/docs/WEF_IT_UnlockingValuePersonalData_CollectionUsage_Report_2013.pdf.
    (四) 網路資料
    A Different Game, The economist (Feb. 25, 2010) http://www.economist.com/node/15557465.
    Everyone ‘to be research patient’, says David Cameron, BBC NEWS (Dec. 5, 2011) http://www.bbc.com/news/uk-16026827
    Fung, Brian, Using Data Mining to Predict Epidemics Before They Spread, THE ATLANTIC, (May 2, 2012) http://www.theatlantic.com/health/archive/2012/05/using-data-mining-to-predict-epidemics-before-they-spread/256605
    Falcon, E., Actually, Congress Did Undermine Our Internet Privacy Rights, (May 4, 2017), Electronic Frontier Foundation, https://www.eff.org/deeplinks/2017/05/congress-repealing-our-internet-privacy-rights-meant-congress-repealed-internet
    Hurwitz, J., Nugent, A., Halper, F., Kaufman, M., How Big Data Analytics Can Prevent Fraud, http://www.dummies.com/how-to/content/how-big-data-analytics-can-prevent-fraud.html.
    Ira B., Breaking Down the Wall (Dec. 19, 2012) https://ethics.journalism.wisc.edu/2012/12/19/breaking-down-the-wall/
    Johnson, D. B., Cybernetics of Society, http://www.jurlandia.org/cybsoc.htm
    Mason, K. M., Short History of Collaborative Filtering, http://www.moyak.com/papers/collaborative-filtering.html
    Rita Rubin, How Did Vioxx Debacle Happen?, USA TODAY (Oct. 12, 2004) http://usatoday30.usatoday.com/news/health/2004-10-12-vioxx-cover_x.htm
    Sweeney, L., Discrimination in Online Ad Delivery, (2013) http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2208240
    To Understand The Secret of Netflix’s Success, You Need to Visit The Local Library, Scroll.in (Apr. 11, 2017) https://thereel.scroll.in/834212/to-understand-the-secret-of-netflixs-success-you-need-to-visit-the-local-library
    Description: 碩士
    國立政治大學
    法律科際整合研究所
    100652002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100652002
    Data Type: thesis
    Appears in Collections:[法律科際整合研究所] 學位論文

    Files in This Item:

    File SizeFormat
    200201.pdf5207KbAdobe PDF632View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback