政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118158
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 109952/140903 (78%)
造访人次 : 46051701      在线人数 : 896
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/118158


    题名: An efficient incremental learning mechanism for tracking concept drift in spam filtering
    作者: 許志堅
    Sheu, Jyh‐Jian
    Chu, Ko-Tsung
    Li, Nien-Feng
    Lee, Cheng-Chi
    贡献者: 傳播學院
    日期: 2017-02
    上传时间: 2018-06-29 17:12:52 (UTC+8)
    摘要: This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email’s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email’s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment.
    關聯: PLOS ONE 【SCIE】, Vol.12, No.2, pp.e0171518
    数据类型: article
    DOI 連結: https://doi.org/10.1371/journal.pone.0171518
    DOI: 10.1371/journal.pone.0171518
    显示于类别:[廣播電視學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    journal.pone.0171518.pdf1099KbAdobe PDF2387检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈