English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 97106/127750 (76%)
Visitors : 33225402      Online Users : 202
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/119593


    Title: 利用不同目標函數之演算法進行粗差偵測之研究
    The study of using different objective functions with algorithm in gross error detection
    Authors: 張宏嘉
    Chang, Hung-Chia
    Contributors: 甯方璽
    Ning, Fang-Shii
    張宏嘉
    Chang, Hung-Chia
    Keywords: 粗差定位
    最小一乘法
    權迭代法
    最佳化權矩陣
    Gross error
    LAD
    OWM
    Reverse weight matrix of LAD
    Date: 2018
    Issue Date: 2018-08-27 14:56:28 (UTC+8)
    Abstract: 在測量領域中,最小二乘法為最常被使用的平差方法,然而最小二乘法建立於觀測量僅含有偶然誤差的前提之下,當觀測量含有粗差時,最小二乘法的成果容易受到影響。因此,本研究透利用不同演算法對不同目標函數進行計算,並以統計檢定量分析各方法偵測粗差的能力。
    本研究所使用的方法分別為等權最小二乘法、權迭代法、最小一乘法及最佳化權矩陣。此外,本研究提出最小一乘法的反求權矩陣的概念,藉此解決最小一乘法缺乏統計檢定量的問題。並以權重、標準化殘差及多餘觀測分量分析各方法之成果。
    在模擬實驗中,當多餘觀測量較少時,最佳化權矩陣及最小一乘法的反求權矩陣具有較佳的粗差定位能力,並降低含有粗差的觀測量之權重;當觀測量越來越多時,則是權迭代法具有較佳的成果。在實測資料的部分,各方法之成果容易受到多餘觀測分量及後驗中誤差的影響,導致各方法皆無法順利定位粗差,而最佳化權矩陣及最小一乘法的反求權矩陣能夠使含有粗差的觀測量具有較大的標準化殘差,以利使用者後續對該觀測量優先進行檢核。
    In the field of surveying, Least Square (LS) methods are often used in adjustment. However, LS built on observations usually show with random errors. If observations have gross errors, the solution of LS will be effected easily. So this study uses different objective functions to calculate with different algorithms, and analyzes the ability of gross errors detection with test statistic.
    The methods in this study are equal weight LS、Iteratively Reweighted LS (IRLS)、Least Absolute Deviation (LAD) and Optimal Weight Matrix (OWM). This study proposes a concept “inverse weight matrix of LAD” to solve the problem that LAD lacks test statistics. And assess the different methods’ results with weight value、 standardized residual and redundant observation component.
    In simulated data, when observations have less redundant observations, OWM and “inverse weight matrix of LAD” have better ability of gross error detection, and them make the gross errors have lower weight value. With more observations, the IRLS has better result. In real data, the posteriori variance will be effected easily, and lead to every methods can’t locate the gross error. However, OWM and “inverse weight matrix of LAD” can enlarge the standardized residual of gross errors and help user to check the observations.
    Reference: 牛國軍、陳芳,2005,「抗差估計(IGGI方案)在粗差探測中的應用」,『西部探礦工程』,17(8):64-66。
    王文峰,2006,「基于LINGO的最小一乘线性回归的参数估计」,『貴州財經學院學報』,2006(6):106-108.
    劉文生、唐守路,2015,「稳健估计的两种粗差探测方法」,『辽宁工程技术大学学报 (自然科学版) 』,35(1):54-58.
    李仲來,1992,「最小一乘法介紹」,『數學通報』,2:40-45。
    李德仁,1984,「利用選擇權迭代法進行粗差定位」,『武漢測繪學院學報』,9(1):46-68。
    李德仁、袁修孝,2005,『誤差處理與可靠性理論』,第二版,武昌:武漢大學出版社。
    林老生、林怡君,2014,「基於最小一乘法的穩健地籍坐標轉換」,『中正嶺學報』,43(2):199-218。
    林怡君,2013,「利用最小一乘法在地籍坐標轉換資料偵錯之研究」,國立政治大學地政學系研究所碩士論文:台北。
    郭信川、官佳慶,2000,「隨機搜尋法於多極值最佳化問題之應用」,『中國造船暨輪機工程師學刊』,19(4):33-40。
    章棟恩、馬玉蘭、徐美萍,2008,『MATLAB 高等數學實驗』,北京:電子工業出版社。
    趙言、黎慕韓、王鵬、周磊,2016,「一次範數最小和選權反覆運算聯合的抗差法」,『大地測量與地球動力學』,36(4):331-333。
    蔡名曜,2014,「運用曲面擬合提升幾何法大地起伏值精度之研究」,國立政治大學地政學系碩士論文:台北。
    謝開貴、宋乾坤、周家啟,2002,「最小一乘線性回歸模型研究」,『系統彷真學報』,14(2):189-192。
    顏上堯、李旺蒼、施佑林,2007,「路徑基礎類粒子群最佳化演算法於求解含凹形節線成本最小成本轉運問題之研究」,『運輸計劃季刊』,36(3):393-424。
    Argeseanu, V., 1986, “Three-Dimensional Adjustment of a Terrestrial Geodetic Network-A Collocation Solution”, Australian Journal of Geodesy, Photogrammetry and Surveying, 44: 1-37.
    Baarda, W., 1968, “A testing procedure for use in geodetic networks”, Netherlands Geodetic Commission, New Series, Delft, Netherlands, 2(5).
    Bektas, S. & Sisman, Y., 2010, “The comparison of L1 and L2-norm minimization methods”, International Journal of the Physical Sciences 5(11) 1721-1727.
    Boscovich, R. J., 1757, De litteraria expeditione per pontificiam ditionem, et synopsis amplioris operis, ac habentur plura ejus ex exemplaria etiam sensorum impressa. Bononiesi Scientiarum et Artum Instituto atque Academia Commentarii, 4: 353–396.
    Caspary & Borutta, 1987, Robust Estimation in Deformation Models. Survey Review 29(233), 29-46.
    Charnes, A., Cooper, W. W., & Ferguson, R. O., 1955, Optimal estimation of executive compensation by linear programming. Management science 1(2), 138-151.
    Hawkins, D. M., 1980, Identification of outliers., London: Chapman and Hall.
    Eberhart, R. C., & Shi, Y., 1998, “Comparison between genetic algorithms and particle swarm optimization”, Evolutionary Programming 7: 611- 616.
    FANG Yang, HE Wei, WANG Guang-xing, DU Yu-jun, LI Hui-mei., 2011, “Comparison and Analysis of Three Methods of Gross Error Detection”, Journal of Huaihai INstitute of Technology(Matural Sciences Edition), 1: 129- 131.
    Guo, J., 2014, "Analytical quality assessment of iteratively reweighted least-squares (IRLS) method.", Boletim de Ciências Geodésicas, 20(1): 132-141.
    Hampel F.R., Ronchetti, E., Rousseeuw, P.J., and Stahel, W.A., 2011, Robust Statistics: The Approach Based on Influence Functions, New York: John Wiley and Sons.
    Huber P. J., 1981, Robust Statistics. New York: John Wiley and Sons.
    Kennedy, J., & Eberhart, R., 1997, “A discrete binary version of the particle swarm algorithm.”, IEEE International Conference 5, 4104-4108.
    K. Kubik, K. Lyons & D. Merchant, 1988, “Photogrammetric work without blunders.”, Photogramm. Eng. Remote Sensing, 54(1): 51-54.
    Lehmann R., 2013, "3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment.", Journal of Surveying Engineering, 139(4): 157- 165.
    Lehmann R., 2013, “On theformulation of the alternative for geodetic outlier detection”, Journal of Geodesy, 87(4): 373- 386
    Li Deren, 1984, " Gross Error Location by means of the Iteration Method with variable Weights.", Geomatics and inform ation science of wuhan univers, 9(1): 46-68.
    Nobakhti, A., Wang, H., & Chai, T. (2009, June). Algorithm for very fast computation of Least Absolute Value regression. In American Control Conference, 2009. ACC'09, 14-19. IEEE.
    Robert G. Staudte, 1990, Robust Estimation and Testing, New York: John Wiley and Sons.
    Schaffrin, 1985, “On Robust Collocation.”, In Proc 1st Marussi Symp Math Geod, Milano, 343- 361.
    Schwarz C. R., Kok J. J., 1993, “Blunder detection and data snooping in LS and robust adjustment.”, Journal of Surveying Engineering, 119(4), 128- 136.
    Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on (pp. 69-73). IEEE.
    Sun, J., Feng, B., & Xu, W. (2004, June). Particle swarm optimization with particles having quantum behavior. In Evolutionary Computation, 2004. CEC2004. Congress on 1: 325-331. IEEE.
    Yang, Y., 1992, “Robustifying collocation.”, Manuscr Geod, 17(1), 21-28.
    Gao, Y., Krakiwsky, E. J., & Czompo, J., 1992, “Robust testing procedure for detection of multiple blunders.”, Journal of Surveying Engineering, 118(1): 11-23.
    Description: 碩士
    國立政治大學
    地政學系
    105257032
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105257032
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.LE.016.2018.A05
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    703201.pdf3535KbAdobe PDF184View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback