English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 110944/141864 (78%)
Visitors : 47993325      Online Users : 643
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/119880
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119880


    Title: 利用無監督遍歷偵測供應鏈流程變異性
    Tracking Supply Chain Process Variability with Unsupervised Cluster Traversal
    Authors: 林登庸
    Lin, Teng-Yung
    Contributors: 郁方
    Yu, Fang
    林登庸
    Lin, Teng-Yung
    Keywords: 非監督分群
    供應鏈管理
    流程變異性
    Unsupervised clustering
    Supply chain management
    Process variability
    Date: 2018
    Issue Date: 2018-09-03 15:47:36 (UTC+8)
    Abstract: Supply chain processes need stability and predictability for the supply to better match demand at the right time with the right quantity. Reaching stable operations under uncertainty, however, is challenging as fluctuating demand patterns in the downstream are so common and make inventory control at the upstream a daunting task. Working with one of the leading semiconductor distributors in the world, who piles up stock that hampers profitability for the sake of satisfying lumpy/erratic demand in the downstream production plants, we help the distributor track process variability in its operations. Specifically, we integrate unsupervised clustering with the recurrent neural network for tracking supply chain process variability without pre-assumptions on demand patterns. We first apply unsupervised learning techniques to characterize weekly process performance of a wide variety of electronic items, where item-week pairs that have relatively-high similarity on values of demand and stock attributes are clustered together. The operational variability of each item can then be measured with the trajectory of the item on its clusters ordered by time. To predict the trajectory of how each item moves from week to week, we propose a new cluster sequence encoding and employ the recurrent neural network structure for sequence prediction. We show that with a training loss function tailored to our encoding scheme, the presented approach can achieve high accuracy on variability prediction for real-world data. Since any upstream supply operations are driven by downstream demand patterns, the prediction on items’ operational variability may help suppliers to better prepare for demand irregularities by dynamically adjusting their operations strategies, e.g., altering throughput rates, rescheduling deliveries, increasing/decreasing fulfillment frequencies, etc.
    Reference: [1]  H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural network architectures for large scale acoustic modeling,” in Fifteenth annual conference of the international speech communication association, 2014.

    [2]  D. McFadden et al., “Conditional logit analysis of qualitative choice behavior,” 1973.

    [3]  M. Ben-Akiva and S. R. Lerman, “Discrete choice analysis mit press cambridge,” MA Google Scholar, 1985.

    [4]  D. M. Beyer, F. Safai, and F. AitSalia, “Profile-based product demand forecasting,” Dec. 20 2005, uS Patent 6,978,249.

    [5]  N. Singh, S. J. Olasky, K. S. Clu, and W. F. Welch Jr, “Supply chain demand forecasting and planning,” Jul. 18 2006, uS Patent 7,080,026.

    [6]  T. Efendigil, S. O ̈nu ̈t, and C. Kahraman, “A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis,” Expert Systems with Applications, vol. 36, no. 3, pp. 6697–6707, 2009.

    [7]  R. Carbonneau, K. Laframboise, and R. Vahidov, “Application of machine learning techniques for supply chain demand forecasting,” European Journal of Operational Research, vol. 184, no. 3, pp. 1140–1154, 2008.

    [8]  F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion?” Journal of Classification, vol. 31, no. 3, pp. 274–295, Oct 2014. [Online]. Available: https://doi.org/10.1007/ s00357-014-9161-z

    [9]  J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,” IEEE Transactions on neural networks, vol. 11, no. 3, pp. 586–600, 2000.

    [10]  A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data,” IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1331–1341, 2002.

    [11]  C.-H. Chiu, J.-J. Chen, and F. Yu, “An e↵ective distributed ghsom algorithm for unsupervised clustering on big data,” in Big Data (BigData Congress), 2017 IEEE International Congress on. IEEE, 2017, pp. 297–304.

    [12]  M. J. Brusco, R. Singh, J. D. Cradit, and D. Steinley, “Cluster analysis in empirical om research: survey and recommendations,” International Journal of Operations & Production Management, vol. 37, no. 3, pp. 300–320, 2017.

    [13]  N. Mladenovi ́c and P. Hansen, “Variable neighborhood search,” Computers & operations research, vol. 24, no. 11, pp. 1097–1100, 1997.

    [14]  F. E. H. Tay and L. J. Cao, “Improved financial time series forecasting by combining support vector machines with self-organizing feature map,” Intelligent Data Analysis, vol. 5, no. 4, pp. 339–354, 2001.

    [15]  C. Hung and C.-F. Tsai, “Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand,” Expert systems with applications, vol. 34, no. 1, pp. 780–787, 2008.

    [16]  C.-J. Lu and Y.-W. Wang, “Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting,” International Journal of Production Economics, vol. 128, no. 2, pp. 603–613, 2010.

    [17]  S.-Y. Huang, R.-H. Tsaih, and F. Yu, “Topological pattern discovery and feature extraction for fraudulent financial reporting,” Expert Systems with Applications, vol. 41, no. 9, pp. 4360–4372, 2014.

    [18]  Z.-R. Fang, S.-W. Huang, and F. Yu, “Appreco: Behavior-aware recommendation for ios mobile applications,” in Web Services (ICWS), 2016 IEEE International Conference on. IEEE, 2016, pp. 492–499.

    [19]  M. Sundermeyer, R. Schlu ̈ter, and H. Ney, “Lstm neural networks for language modeling,” in Thirteenth Annual Conference of the International Speech Communication Association, 2012.

    [20]  J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

    [21]  N. S. Chaudhari and X.-M. Yuan, “Demand forecasting of short life span products: Issues, challenges, and use of soft computing techniques,” in Handbook of Computational Intelligence in Manufacturing and Production Management. IGI Global, 2008, pp. 124–143.

    [22]  C. L. Giles, S. Lawrence, and A. C. Tsoi, “Noisy time series prediction using recurrent neural networks and grammatical inference,” Machine learning, vol. 44, no. 1-2, pp. 161–183, 2001.

    [23]  G. A. Darbellay and M. Slama, “Forecasting the short-term demand for electricity: Do neural networks stand a better chance?” International Journal of Forecasting, vol. 16, no. 1, pp. 71–83, 2000.

    [24]  K. Mupparaju, A. Soni, P. Gujela, and M. A. Lanham, “A comparative study of machine learning frameworks for demand forecasting.”

    [25]  A. Rauber, E. Pampalk, and D. Merkl, Using psycho-acoustic models and selforganizing maps to create a hierarchical structuring of music by sound similarity. na, 2002.

    [26]  S.-H. Hsu, J. P.-A. Hsieh, T.-C. Chih, and K.-C. Hsu, “A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression,” Expert Systems with Applications, vol. 36, no. 4, pp. 7947–7951, 2009.

    [27]  S. Liu, L. Lu, G. Liao, and J. Xuan, “Pattern discovery from time series using growing hierarchical self-organizing map,” in International Conference on Neural Information Processing. Springer, 2006, pp. 1030–1037.

    [28]  M. A. Hern ́andez and S. J. Stolfo, “Real-world data is dirty: Data cleansing and the merge/purge problem,” Data mining and knowledge discovery, vol. 2, no. 1, pp. 9–37, 1998.

    [29]  M. C. Wilson, “The impact of transportation disruptions on supply chain performance,” Transportation Research Part E: Logistics and Transportation Review, vol. 43, no. 4, pp. 295–320, 2007.

    [30]  S. M. Homayouni, T. S. Hong, and N. Ismail, “Development of genetic fuzzy logic controllers for complex production systems,” Computers & Industrial Engineering, vol. 57, no. 4, pp. 1247–1257, 2009.

    [31]  P. J. Huber, “Robust statistics,” in International Encyclopedia of Statistical Science. Springer, 2011, pp. 1248–1251.

    [32]  L. B. Sheiner and S. L. Beal, “Some suggestions for measuring predictive performance,” Journal of pharmacokinetics and biopharmaceutics, vol. 9, no. 4, pp. 503– 512, 1981.

    [33]  A. Tato and R. Nkambou, “Improving adam optimizer,” 2018.
    Description: 碩士
    國立政治大學
    資訊管理學系
    105356006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356006
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MIS.023.2018.A05
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    600601.pdf1148KbAdobe PDF2173View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback