English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 96274/126892 (76%)
Visitors : 32309578      Online Users : 372
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/120126
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/120126


    Title: On Bounded Entire Solutions of Integro-Differential Equations
    Authors: 蔡隆義
    Tsai, Long-Yi
    Contributors: 應數系
    Date: 1988
    Issue Date: 2018-09-25 16:21:51 (UTC+8)
    Abstract: The author considers two types of integro-differential equations: (a) Δu+f(x,u)+∫ R n p(x,y)g(u)dy=0 and (b) u t =Δu+f(x,t,u)+∫ R n q(x,t,y)g(u)dy=0 . Assuming the existence of upper and lower solutions, the author proves the existence of classical solutions of (a), (b) by the method of monotone iteration. The main portion of the paper is devoted to examples in which the author constructs upper and lower radial solutions by solving ordinary integro-differential equations. The title of this paper is misleading because there is no discussion regarding analyticity anywhere in the results.
    Relation: Chinese Journal of Mathematics,16(4),265-288
    AMS MathSciNet:MR1021312
    Data Type: article
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML105View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback