政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/120129
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 97142/127787 (76%)
造访人次 : 33313442      在线人数 : 453
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/120129


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/120129


    题名: On nonexistence results for some integro-differential equations of elliptic type
    作者: 蔡隆義
    Tsai, Long-Yi
    吳水利
    Wu, Shui Li
    贡献者: 應數系
    日期: 1993-12
    上传时间: 2018-09-25 16:22:57 (UTC+8)
    摘要: The authors consider the following equations: $$\Delta u=k(x)h(u)+H(x)\int_{\bold R^n}a(y)q(u(y))\,dy\tag1$$

    in $\bold R^n$ $(n\geq 2, \Delta$ a Laplacian operator), with $h,q$ convex, $K$, $H$ locally Hölder continuous and nonnegative; $$\nabla \cdot[g(|\nabla u|)\nabla u]=K(|x|)h(u)+H(|x|)\int_{\bold R^n}a(|y|)q(u(y))\,dy,\tag2$$

    where $g$ takes values in some bounded interval $[0,x]$ and its main property is $(pg(p))'>0$.
    Their goal is to prove that in both cases no positive and bounded solution exists under additional assumptions. For instance, adding some requirement on the functions $q,h$, it is shown that there is no positive solution of $(1)$ such that its average over $|x|=r$ has a prescribed limit for $r\to 0$.
    The authors prove several theorems of this type. These results are obtained through a series of lower estimates on the average of $u$ which eventually are shown to be inconsistent with the existence of any positive solution.
    關聯: Chinese Journal of Mathematics,21(4),349-385
    AMS MathSciNet:MR1247556
    数据类型: article
    显示于类别:[應用數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML121检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈