MoS2 nanoribbons with armchair-terminated edges are semiconductors suitable for the tuning of electronic and magnetic properties. Our first-principles density function calculations reveal that a variety of transition-metal atomic chains deposited on some of the ribbons is able to transform the semiconductors into half metals, allowing transport of 100% spin-polarized currents. Furthermore, we found that a Si atomic chain is equally capable of achieving half metallicity when adsorbed on the same nanoribbon. These results should be useful for spintronic application.