English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109948/140897 (78%)
Visitors : 46148301      Online Users : 305
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124331

    Title: The Sequentially-Learning-Based Algorithm with Multiple Output Nodes in Futures Forecast
    Authors: Jheng, Yu-Jie
    Tsai, Yu-Han
    Tsaih, Rua-Huan
    Contributors: 2019智慧企業資訊應用發展國際研討會
    Keywords: ASLFN, Cramming, Softening, Future forecast
    Date: 2019-06
    Issue Date: 2019-07-17 15:05:00 (UTC+8)
    Abstract: Investment is a way to increase assets. The types of investment are very diverse, including stocks, futures, funds and so on. Regardless of the form of investment, the consistent purpose of investors is to make a profit. Inevitably, these investment commodities are accompanied by risks, but different investment products have different risks and profitability. In the past, technical analysis usually used statistical methods to analyze the market. Although the results have reference value, the effect is limited. The reason is that whether it is stocks or futures, the trend of the two is highly nonlinear. AI has different characteristics that can break through the limitations of traditional analysis because it involves multidimensional explanatory variables and uses a large number of continuous long-term records to achieve more accurate prediction requirements and reasonable business insight. This study addresses this challenge through deriving a sequentially-learning-based algorithm for the single-hidden layer feed-forward neural networks (SLFN) with the binary input/output and making the technical justification. Within the training process, the amount of adopted hidden nodes is variable, and thus the SLFN becomes an adaptive single-hidden layer feed-forward neural networks (ASLFN).
    Relation: 2019智慧企業資訊應用發展國際研討會
    Data Type: conference
    Appears in Collections:[2019智慧企業資訊應用發展國際研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    11.pdf74KbAdobe PDF2295View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    著作權政策宣告 Copyright Announcement
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback