English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109953/140892 (78%)
Visitors : 46223046      Online Users : 633
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124369

    Title: 利用Seq2Seq機器學習於延伸機器人對答內容
    Applying seq2seq machine learning for extend Chatbot content.
    Authors: 李柏賢
    Contributors: 2019智慧企業資訊應用發展國際研討會
    Keywords: 自然語言處理
    NLP;Recurrent Neural Network;Word2Vec;Long Short-Term Memory;Question Generator
    Date: 2019-06
    Issue Date: 2019-07-17 15:14:12 (UTC+8)
    Abstract: 近年來深度學習蓬勃發展,讓機器學習方式學習到人類的行為模式,而在深度學習薰陶下,機器人對話又慢慢的浮出水面,在傳統機器人對話中以自己建立的資料庫來打造機器人,必須依賴於強大問答資料庫一個問題一個答案的方式進行,往往產生出資料所花費時間與理想超出許多,在面對客戶會想知道客戶問什麼樣的問題,產生出問題成為了重要關鍵,本研究利用seq2seq模型進行訓練打造一個產生問句模型,使機器人可以與人一樣產生問句,以利於發現客戶所會提的問題。
    In recent years, deep learning has flourished, allowing machine learning to learn human behavior patterns. Under the deep learning, robot dialogue has slowly surfaced, and in the traditional robot dialogue, the robot is built with its own database. It must rely on the powerful question and answer database to answer one question and one answer. It often takes a lot of time and ideals to generate the information. In the face of the customer, they will want to know what kind of problem the customer asks, and the problem becomes an important key. This study uses the seq2seq model to train to create a question-making model that allows the robot to generate questions like people, in order to help identify problems that customers are asking.
    Relation: 2019智慧企業資訊應用發展國際研討會
    Data Type: conference
    Appears in Collections:[2019智慧企業資訊應用發展國際研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    49.pdf1455KbAdobe PDF21649View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    著作權政策宣告 Copyright Announcement
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback