政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/129032
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 112704/143671 (78%)
造访人次 : 49724350      在线人数 : 451
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/129032


    题名: Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation
    作者: 甯方璽*
    Ning , Fang-Shii
    Chen, Yu-Chun
    贡献者: 地政系
    关键词:  indoor positioning; magnetic fingerprint map; pedestrian dead reckoning; particle filter
    日期: 2019-12
    上传时间: 2020-03-02 15:25:24 (UTC+8)
    摘要: Although advancement has been observed in global navigation satellite systems and these systems are widely used, they cannot provide effective navigation and positioning services in covered areas and areas that lack strong signals, such as indoor environments. Therefore, in recent years, indoor positioning technology has become the focus of research and development. The magnetic field of the Earth is quite stable in an open environment. Due to differences in building and internal structures, this type of three-dimensional vector magnetic field is widely available indoors for indoor positioning. A smartphone magnetometer was used in this study to collect magnetic field data for constructing indoor magnetic field maps. Moreover, an acceleration sensor and a gyroscope were used to identify the position of a mobile phone and detect the number of steps travelled by users with the phone. This study designed a procedure for measuring the step length of users. All obtained information was input into a pedestrian dead reckoning (PDR) algorithm for calculating the position of the device. The indoor positioning accuracy of the PDR algorithm was optimised using magnetic gradients of magnetic field maps with a modified particle filter algorithm. Experimental results reveal that the indoor positioning accuracy was between 0.6 and 0.8 m for a testing area that was 85 m long and 33 m wide. This study effectively improved the indoor positioning accuracy and efficiency by using the particle filter method in combination with the PDR algorithm with the magnetic fingerprint map.
    關聯: Sensors, Vol.20, No.1, pp.185:1-15
    数据类型: article
    DOI 連結: https://doi.org/10.3390/s20010185
    DOI: 10.3390/s20010185
    显示于类别:[地政學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    11.pdf4690KbAdobe PDF2251检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈