English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94986/125531 (76%)
Visitors : 31071569      Online Users : 455
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/130193
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/130193

    Title: Factor map, diamond and density of pressure functions
    Authors: 班榮超
    Ban, Jung-Chao
    Chang, Chih-Hung
    Contributors: 應數系
    Keywords: Sofic shift
    Date: 2011-05
    Issue Date: 2020-06-22 13:41:12 (UTC+8)
    Abstract: Letting π: X → Y be a one-block factor map and Φ be an almostadditive potential function on X, we prove that if π has diamond, then the pressure P(X, Φ) is strictly larger than P(Y, πΦ). Furthermore, if we define the ratio ρ(Φ) = P(X, Φ)/P(Y, πΦ), then ρ(Φ) > 1 and it can be proved that there exists a family of pairs {(πi,Xi)}ki=1 such that πi: Xi → Y is a factor map between Xi and Y, Xi ⊆ X is a subshift of finite type such that ρ(πi,Φ{pipe}Xi) (the ratio of the pressure function for P(Xi,Φ{pipe}Xi) and P(Y, πΦ)) is dense in [1, ρ(Φ)]. This extends the result of Quas and Trow for the entropy case.
    Relation: Proceedings of the American Mathematical Society, Vol.139, No.11, pp.3985-3997
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1090/S0002-9939-2011-10803-7
    DOI: 10.1090/S0002-9939-2011-10803-7
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    102.pdf224KbAdobe PDF27View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback