English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92721/123073 (75%)
Visitors : 26952252      Online Users : 370
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/131462


    Title: 以預期風險溢價建立股票評分系統—以台灣股市為例
    Using Expected Risk Premium to Build Scoring System in Taiwan Stock Market
    Authors: 徐若庭
    Hsu, Jo-Ting
    Contributors: 郭維裕
    徐若庭
    Hsu, Jo-Ting
    Keywords: 風險溢價
    因子溢價
    超額報酬
    四因子模型
    Risk premium
    Factor premium
    Excess return
    Four-factor model
    Date: 2020
    Issue Date: 2020-09-02 11:40:13 (UTC+8)
    Abstract: 經過幾次的金融危機,投資者對於分散風險更為看重,各種投資組合的建構方法不斷地推陳出新。本文結合因子溢價的觀點以及風險曝露來建構個股的分數,依據分數進行排名,接著將排名由低到高組成五組等權重投資組合,持有投資組合並檢視各組的報酬表現,藉此提供投資者一個新的風險評估方法。
    經本文實證研究得出,排名最低的投資組合,報酬表現較為優異,排名最高的組合,報酬表現則最為不佳。另外運用四因子模型進行分析,投資組合報酬約有84.7%能夠由模型解釋,且多數投資組合皆獲得了超額報酬,其中市場風險因子(MKT)對各投資組合報酬皆有顯著的正相關,經實證組成之五組投資組合顯示多偏向高帳面市值比、價值型投資組合。
    After several financial crises, investors are more concerned about diversifying risks. Various methods to construct portfolio are constantly innovating. We integrating the views and exposures of the factor premiums to build the score of stocks, and rank stocks based on the score. Then, according to the ranking from low to high, the stocks are grouped into five equal weight portfolios. We hold the portfolios and observe the performance of each group to provide investors with a new method of risk assessment.
    The empirical results show that the lowest-ranked portfolio has the best performance, and the highest-ranked portfolio has the worst performance. In addition, we also use the four-factor model for analysis. Approximately 84.7% of the portfolios returns can be explained by the model's inputs, and most of the portfolios have received excess returns. Market risk factor (MKT) has a significant positive correlation with the return of each portfolio. The five groups of portfolios in the empirical result tend to be high book-to-market ratio portfolios and value portfolios.
    Reference: 1. Amenc, N., F. Goltz, and V. Le Sourd (2017). The EDHEC European ETF and Smart Beta Survey 2016. EDHEC Institute Publication Series. Paris: EDHEC-Risk Institute.

    2. Ang, A., R.J. Hodrick, Y. Xing, and X. Zhang (2006). The Cross- Section of Volatility and Expected Returns. The Journal of Finance, Vol. 61, No. 1, pp. 259-299.

    3. Arnott, R. D., J. C. Hsu and P. Moore. (2005). Fundamental Indexation. Financial Analysts Journal 61(2): 83-99.

    4. Black, F., M. Jensen, and M. Scholes (1972). The Capital Asset Pricing Model: Some Empirical Tests, pp. 79-121. In Studies in the Theory of Capital Markets edited by M. Jensen. New York, NY: Praeger.

    5. Clarke, R., H. de Silva, and S. Thorley (2011). Minimum Variance Portfolio Composition. The Journal of Portfolio Management, Vol. 37, No. 2, pp. 31-45.

    6. Da Silva, A. S., and W. Lee. (2017). From Risk Premia to Smart Betas: A Unified Framework. The Journal of Portfolio Management 44 (1): 44–54.

    7. Engle, R. F., Ledoit, O., and Wolf, M. (2017). Large dynamic covariance matrices. Journal of Business & Economic Statistics. doi: 0.1080/07350015.2017.1345683.

    8. Gordon, Myron J. (1959). Dividends, Earnings and Stock Prices. Review of Economics and Statistics. The MIT Press. 41 (2): 99–105.

    9. Harvey, C. R., Y. Liu, and H. Zhu. (2016). ...and the Cross- Section of Expected Returns. The Review of Financial Studies 29 (1): 5–68.

    10. Hodges, P., K. Hogan, J. Petterson, and A. Ang. (2017). Factor Timing with Cross-Sectional and Time-Series Predictions. The Journal of Portfolio Management 44 (1): 30–43.

    11. Hou, K., Xue, C., and Zhang, L. (2015). Digesting anomalies: An investment approach. Review of Financial Studies, 28(3):650–705.

    12. Ledoit, O. and Wolf, M. (2004b). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88(2):365–411.

    13. Ledoit, O., M. Wolf, and Z. Zhao (2018). Efficient Sorting: A More Powerful Test for Cross-Sectional Anomalies. Working paper no. 238, University of Zurich, Dept. of Economics, https://ssrn.com/abstract=2881417.

    14. Lee, W. (2014). Constraints and Innovations for Pension Investment: The Cases of Risk Parity and Risk Premia Investing. The Journal of Portfolio Management, Vol. 40, No. 3, pp. 12-20.

    15. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7:77–91.

    16. McLean, R. D. and Pontiff, J. (2016). Does academic research destroy stock return predictability? Journal of Finance, 71(1):5–32.

    17. Steven P. Greiner and Stoyan V. Stoyanov (2019). Portfolio Scoring by Expected Risk Premium. The Journal of Portfolio Management, 45 (4) 83-90.
    Description: 碩士
    國立政治大學
    國際經營與貿易學系
    107351031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107351031
    Data Type: thesis
    DOI: 10.6814/NCCU202001347
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    103101.pdf1957KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback